Startseite Some exponential diophantine equations II: The equation x2 – Dy2 = kz for even k
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Some exponential diophantine equations II: The equation x2Dy2 = kz for even k

  • Yasutsugu Fujita EMAIL logo und Maohua Le
Veröffentlicht/Copyright: 28. März 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Let D be a nonsquare integer, and let k be an integer with |k| ≥ 1 and gcd(D, k) = 1. In the part I of this paper, using some properties on the representation of integers by binary quadratic primitive forms with discriminant 4D, M.-H. Le gave a series of explicit formulas for the integer solutions (x, y, z) of the equation x2Dy2 = kz, gcd(x, y) = 1, z > 0 for 2 ∤ k or |k| is a power of 2. In this part, we give similar results for the other cases of k.

Acknowledgement

The authors thank the referees for their careful reading and pertinent suggestions.

  1. Communicated by István Gaál

References

[1] Abu Muriefah, F. S.—Bugeaud, Y.: The Diophantine equationx2 + C = yn: a brief overview, Rev. Colomb. Math. 40 (2006), 31–37.10.1515/dema-2006-0206Suche in Google Scholar

[2] Bérczes, A.—Pink, I.: On generalized Lebesgue-Ramanujan-Nagell equations, An. St. Univ. Ovidius Constanta 22 (2014), 51–71.10.2478/auom-2014-0006Suche in Google Scholar

[3] Bugeaud, Y.: On the Diophantine equationx2pm = ±yn, Acta Arith. 80 (1997), 213–223.10.4064/aa-80-3-213-223Suche in Google Scholar

[4] Bugeaud, Y.—Shorey, T. N.: On the number of solutions of the generalized Ramanujan-Nagell equation, J. Reine Angew. Math. 539 (2001), 55–74.10.1515/crll.2001.079Suche in Google Scholar

[5] Gou, S.—Wang, T.: The Diophantine equationx2 + 2a17b = yn, Czechoslovak Math. J. 62 (2012), 645–654.10.1007/s10587-012-0056-zSuche in Google Scholar

[6] Hua, L.-K.: Introduction to Number Theory, Berlin, Springer-Verlag, 1982.Suche in Google Scholar

[7] Landau, E.: Vorlesungen uber Zahlentheorie, Leipzig, Hirzel, 1927.Suche in Google Scholar

[8] Le, M.-H.: On the representation of integers binary quadratic primitive forms I, J. Changchun Teachers College, Nat. Sci. 3 (1986), 3–12 (in Chinese).Suche in Google Scholar

[9] Le, M.-H.: On the representation of integers binary quadratic primitive forms II, J. Changsha Railway Institute 7 (1989), 6–18 (in Chinese).Suche in Google Scholar

[10] Le, M.-H.: Some exponential Diophantine equations I: The equationD1x2D2y2 = λkz, J. Number Theory 55 (1995), 209–221.10.1006/jnth.1995.1138Suche in Google Scholar

[11] Le, M.-H.—Hu, Y.-Z.: New advances on generalized Lebesgue-Ramanujan-Nagell equation, Adv. Math. Beijing 41 (2012), 385–397 (in Chinese).Suche in Google Scholar

[12] Le, M.-H.—Soydan, G.: A brief survey on the generalized Lebesgue-Ramanujan-Nagell equation, Surv. Math. Appl. 15 (2020), 473–523.Suche in Google Scholar

[13] Mordell, L. J.: Diophantine Equations, London, Academic Press, 1969.Suche in Google Scholar

[14] Pink, I.: On the Diophantine equationx2+2α3β5γ7δ = yn, Publ. Math. Debrecen 70 (2007), 149–166.10.5486/PMD.2007.3477Suche in Google Scholar

[15] Saradha, N.—Srinivasan, A.: Solutions of some generalized Ramanujan-Nagell equations via binary quadratic forms, Publ. Math. Debrecen 71 (2007), 349–374.10.5486/PMD.2007.3735Suche in Google Scholar

[16] WANG, J.-P.—WANG, T.-T.—ZHANG, W.-P.: The exponential Diophantine equationx2+(3n2 + 1)y = (4n2 + 1)z, Math. Slovaca 64 (2014), 1145–1152.10.2478/s12175-014-0265-zSuche in Google Scholar

[17] Yang, H.—Fu, R.: An upper bound for least solutions of the exponential Diophantine equationD1x2D2y2 = λkz, Int. J. Number Theory 11 (2015), 1107–1114.10.1142/S1793042115500608Suche in Google Scholar

[18] Yang, H.—Fu, R.: The exponential diophantine equation xy + yx = z2 via a generalization of the Ankeny-Artin-Chowla conjecture, Int. J. Number Theory 14 (2018), 1223–1228.10.1142/S1793042118500756Suche in Google Scholar

[19] Yang, H.—Fu, R.: A note on the Goormaghtigh equation, Period. Math. Hungar. 79 (2019), 86–93.10.1007/s10998-018-0265-9Suche in Google Scholar

[20] Zhu, H.—Le, M.-H.—Soydan, G.—Togbé, A.: On the exponential Diophantine equationx2+2apb = yn, Period. Math. Hungar. 70 (2015), 233–247.10.1007/s10998-014-0073-9Suche in Google Scholar

Received: 2020-07-28
Accepted: 2021-04-18
Published Online: 2022-03-28
Published in Print: 2022-04-26

© 2022 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2022-0023/html
Button zum nach oben scrollen