Home One-parameter generalization of dual-hyperbolic Pell numbers
Article
Licensed
Unlicensed Requires Authentication

One-parameter generalization of dual-hyperbolic Pell numbers

  • Dorota Bród , Anetta Szynal-Liana EMAIL logo and Iwona Włoch
Published/Copyright: March 28, 2022
Become an author with De Gruyter Brill

Abstract

In this paper, we introduce one-parameter generalization of dual-hyperbolic Pell numbers – dual-hyperbolic r-Pell numbers. We give some identities for them related to Catalan identity, Cassini identity, d’Ocagne identity and convolution identity. Moreover, we define their matrix generators.

  1. (Communicated by István Gaál)

References

[1] Akar, M.—Yüce, S.—Şahin, S.: On the dual hyperbolic numbers and the complex hyperbolic numbers, Journal of Computer Science & Computational Mathematics 8(1) (2018); 10.20967/jcscm.2018.01.001Search in Google Scholar

[2] Aydin, F.T.: Dual-hyperbolic Pell quaternions, J. Discrete Math. Sci. Cryptogr. (2020); 10.1080/09720529.2020.1758367.Search in Google Scholar

[3] Bród, D.: On a new one parameter generalization of Pell numbers, Ann. Math. Sil. 33 (2019), 66–76.10.2478/amsil-2019-0011Search in Google Scholar

[4] Catarino, P.: On some identities and generating functions for k-Pell numbers, International Journal of Mathematical Analysis 7(38) (2013), 1877–1884.10.12988/ijma.2013.35131Search in Google Scholar

[5] Cihan, A.—Azak, A. Z.—Güngör, M. A.—Tosun, M.: A study on dual hyperbolic Fibonacci and Lucas numbers, An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 27(1) (2019), 35–48.10.2478/auom-2019-0002Search in Google Scholar

[6] Clifford, W. K.: Preliminary sketch of biquaternions, Proc. Lond. Math. Soc. s1-4 (1871), 381–395.10.1112/plms/s1-4.1.381Search in Google Scholar

[7] Cockle, J.: On a new imaginary in algebra, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 34 (1849), 37–47.10.1080/14786444908646169Search in Google Scholar

[8] Cockle, J.: On certain functions resembling quaternions, and on a new imaginary in algebra, Lond. Edinb. Dublin Philos. Mag. J. Sci. 33 (1848), 435–439.10.1080/14786444808646139Search in Google Scholar

[9] Cockle, J.: On impossible equations, on impossible quantities, and on tessarines, Lond. Edinb. Dublin Philos. Mag. J. Sci. 37 (1850), 281–283.10.1080/14786445008646598Search in Google Scholar

[10] Cockle, J.: On the symbols of algebra, and on the theory of tesarines, Lond. Edinb. Dublin Philos. Mag. J. Sci. 34 (1849), 406-410.10.1080/14786444908646257Search in Google Scholar

[11] Horadam, A. F.: Pell identities, Fibonacci Quart. 9(3) (1971), 245–263.Search in Google Scholar

[12] Kocer, E. G.—Tuglu, N.: The Binet formulas for the Pell and Pell-Lucas p-numbers, Ars Combin. 85 (2007), 3–17.Search in Google Scholar

[13] Piejko, K.—Włoch, I.: On k-distance Pell numbers in $3$-edge coloured graphs, J. Appl. Math. 2014 (2014), Art. ID 428020.10.1155/2014/428020Search in Google Scholar

[14] Szynal-Liana, A.—Włoch, I.: Hypercomplex Numbers of the Fibonacci type, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów, 2019.Search in Google Scholar

Received: 2020-12-23
Accepted: 2021-04-23
Published Online: 2022-03-28
Published in Print: 2022-04-26

© 2022 Mathematical Institute Slovak Academy of Sciences

Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2022-0035/html
Scroll to top button