Home Mathematics A Study on statistical versions of convergence of sequences of functions
Article
Licensed
Unlicensed Requires Authentication

A Study on statistical versions of convergence of sequences of functions

  • Samiran Das and Argha Ghosh EMAIL logo
Published/Copyright: March 28, 2022
Become an author with De Gruyter Brill

Abstract

We introduce and study statistical versions of recently introduced concepts of semi-α convergence, semi exhaustiveness and semi uniform convergence of sequences of functions between metric spaces. We prove some basic results and establish a connection between them. Also, we give some examples to ensure deviation of established notions.

MSC 2010: Primary 40G15; 26A03

Samiran Das is grateful to the Council of Scientific and Industrial Research, India for his fellowships’ funding under CSIR-JRF (SRF) scheme during the preparation of this paper


Acknowledgement

We are thankful to the referee for some valuable suggestions which improved the quality and presentation of the paper substantially.

  1. (Communicated by Gregor Dolinar )

References

[1] Arens, R. F.: A topology for spaces of transformations, Ann. of Math. 47(3) (1946), 480–495.10.2307/1969087Search in Google Scholar

[2] Carathéodory, C.: Stetige Konvergenz und normale Familien von Funktionen, Math. Ann. 101 (1929), 515–533.10.1007/BF01454857Search in Google Scholar

[3] Caserta, A.—Kočinac, L. D. R.: On statistical exhaustiveness, Appl. Math. Lett. 25 (2012), 1447–1451.10.1016/j.aml.2011.12.022Search in Google Scholar

[4] Caserta, A.—Di Maio, G.—Kočinac, L. D. R.: Statistical convergence in function spaces, Abstr. Appl. Anal. 2011 (2011), Art. ID 420419.10.1155/2011/420419Search in Google Scholar

[5] Connor, J.: R-type summability methods, Cauchy criteria, P-sets and statistical convergence, Proc. Amer. Math. Soc. 115 (1992), 319–327.10.1090/S0002-9939-1992-1095221-7Search in Google Scholar

[6] Connor, J.: The statistical and strong P-Cesaro convergence of sequences, Analysis 8 (1988), 47–63.10.1524/anly.1988.8.12.47Search in Google Scholar

[7] Connor, J.—Grosse-Erdmann, K. G.: Sequential definitions of continuity for real functions, Rocky Mountain J. Math. 33 (2003), 93–121.10.1216/rmjm/1181069988Search in Google Scholar

[8] Das, R.—Papanastassiou, N.: Some types of convergence of sequences of real valued functions, Real Anal. Exchange 28(2) (2002/2003), 1–16.10.14321/realanalexch.28.2.0481Search in Google Scholar

[9] Ewert, J.: Almost uniform convergence, Period. Math. Hung. 26(1) (1993), 77–84.10.1007/BF01875883Search in Google Scholar

[10] Fast, H.: Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.10.4064/cm-2-3-4-241-244Search in Google Scholar

[11] Fridy, J. A.: On statistical convergence, Analysis 5 (1985), 301–313.10.1524/anly.1985.5.4.301Search in Google Scholar

[12] Fridy, J. A.: Statistical limit points, Proc. Amer. Math. Soc. 118(4) (1993), 1187–1192.10.1090/S0002-9939-1993-1181163-6Search in Google Scholar

[13] Gökhan, A.—Güngör, M.: On pointwise statistical convergence, Indian J. Pure Appl. Math. 33(9) (2002), 1379–1384.Search in Google Scholar

[14] Güngör, M.—Gökhan, A.: On uniform statistical convergence, Int. J. Pure Appl. Math. 19(1) (2005), 17–24.Search in Google Scholar

[15] Gregoriades, G.—Papanastassiou, N.: A notion of exhaustiveness and Ascoli-type theorems, Topol. Appl. 155 (2008), 1111–1128.10.1016/j.topol.2008.02.005Search in Google Scholar

[16] Hahn, H.: Reelle Funktionen, Chelsea, New York, 1948.Search in Google Scholar

[17] Di Maio, G.—Kočinac, L. D. R.: Statistical convergence in topology, Topol. Appl. 156 (2008), 28–45.10.1016/j.topol.2008.01.015Search in Google Scholar

[18] Megaritis, A. C.: Ideal convergence of nets of functions with values in uniform spaces, Filomat 31(20) (2017), 6281–6292.10.2298/FIL1720281MSearch in Google Scholar

[19] Papanastassiou, N.: A note on convergence of sequences of functions, Topol. Appl. 275 (2020), Art. ID 107017.10.1016/j.topol.2019.107017Search in Google Scholar

[20] Šalát, T.: On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139–150.Search in Google Scholar

[21] Steinhus, H.: Sur la convergence ordinatre et la convergence asymptotique, Colloq. Math. 2 (1951), 73–74.Search in Google Scholar

[22] Stoilov, S.: Continuous convergence, Rev. Math. Pures Appl. 4 (1959), 341–344.Search in Google Scholar

Received: 2020-10-28
Accepted: 2021-04-03
Published Online: 2022-03-28
Published in Print: 2022-04-26

© 2022 Mathematical Institute Slovak Academy of Sciences

Downloaded on 15.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2022-0030/html
Scroll to top button