Startseite Stability and feedback stabilizability of delay periodic differential equations with pairwise permutable matrix functions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Stability and feedback stabilizability of delay periodic differential equations with pairwise permutable matrix functions

  • Milan Medveď und Michal Pospíšil EMAIL logo
Veröffentlicht/Copyright: 28. März 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Representation of solutions of delayed differential equations with multiple delays and periodic coefficients is established. Consequently, results on stabilizability of weakly delayed closed-loop systems and stability of non-weakly delayed periodic systems are proved. The stabilizability result is an extension of the classical Brunovský theorem for linear periodic systems of ordinary differential equations to a class of delay differential equations with pairwise permutable matrix functions.

MSC 2010: 34K06; 34K20
  1. (Communicated by Michal Fečkan

Acknowledgement

The authors thank the anonymous reviewer for careful reading of the manuscript.

References

[1] Arnold, V. I.: On matrices depending on parameters, Russian Math. Surveys 26 (1971), 29–43.10.1007/978-3-642-31031-7_28Suche in Google Scholar

[2] Belikov, J.—Bartosiewicz, Z.: Stability and stabilizability of linear time-delay systems on homogeneous time scales, Proc. Est. Acad. Sci. 66 (2017), 124–136.10.3176/proc.2017.2.02Suche in Google Scholar

[3] Bihari, I. A.: A generalization of a lemma of Bellman and its application to uniqueness problem of differential equation, Acta Math. Hungar. 7 (1956), 81–94.10.1007/BF02022967Suche in Google Scholar

[4] Brunovský, P.: Controllability and linear closed-loop controls in linear periodic systems, J. Differential Equations 6 (1969), 296–313.10.1016/0022-0396(69)90019-9Suche in Google Scholar

[5] Hartman, P.: Ordinary Differential Equations, John Wiley & Sons, Inc., New York, 1964.Suche in Google Scholar

[6] Hale, J. K.—Verduyn Lunel, S. M.: Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.10.1007/978-1-4612-4342-7Suche in Google Scholar

[7] Higham, N. J.: Functions of Matrices, Theory and Computation, SIAM, Philadelphia, 2008.10.1137/1.9780898717778Suche in Google Scholar

[8] Khusainov, D. Ya.—Shuklin, G. V.: Linear autonomous time-delay system with permutation matrices solving, Stud. Univ. Žilina, Math. Ser. 17 (2003), 101–108.Suche in Google Scholar

[9] Medveď, M.—Pospíšil, M.: Sufficient conditions for the asymptotic stability of nonlinear multidelay differential equations with linear parts defined by pairwise permutable matrices, Nonlinear Anal. Theory Methods Appl. 75 (2012), 3348–3363.10.1016/j.na.2011.12.031Suche in Google Scholar

[10] Medveď, M.—Pospíšil, M.: Representation of solutions of systems of linear differential equations with multiple delays and linear parts given by non-permutable matrices, Nonlinear Oscil. 19 (2016), 521–532.Suche in Google Scholar

[11] Pereira, E.—Rosa, C.: A method to construct sets of commuting matrices, J. Math. Res. 5 (2013), 1–7.10.5539/jmr.v5n3p1Suche in Google Scholar

[12] Pinto, M.: Integral inequalities of Bihari-type and applications, Funkcial. Ekvac. 33 (1990), 387–403.Suche in Google Scholar

[13] Popov, V. M.: Hyperstability and optimality of automatic systems with several control functions, Rev. Roumaine Sci. Techn., Electrotechn. et Energ. 9 (1964), 629–690.Suche in Google Scholar

[14] Popov, V. M.: Hyperstabilitatea Sistemelor Automate, Editura Academiei Rep. Soc. Romania, Bucharest, 1966.Suche in Google Scholar

[15] Pospíšil, M.: Representation and stability of solutions of systems of functional differential equations with multiple delays, Electron. J. Qual. Theory Differ. Equ. 54 (2012), 1–30.10.14232/ejqtde.2012.1.54Suche in Google Scholar

[16] Pospíšil, M.: Relative controllability of neutral differential equations with a delay, SIAM J. Control Optim. 55 (2017), 835–855.10.1137/15M1024287Suche in Google Scholar

[17] Pospíšil, M.—Jaroš, F.: On the representation of solutions of delayed differential equations via Laplace transform, Electron. J. Qual. Theory Differ. Equ. 117 (2016), 1–13.10.14232/ejqtde.2016.1.117Suche in Google Scholar

[18] Seuret, A.—Johansson, H.: Stabilization of time-delay systems through linear differential equations using a descriptor representation, Proceedings of the European Control Conference, 2009, 4727–4732.10.23919/ECC.2009.7075147Suche in Google Scholar

[19] Sieber, J.: Generic stabilizability for time-delayed feedback control, Proc. Roy. Soc. Edinburgh Sect. A 472 (2016), Art. ID 20150593, 19 pp.10.1098/rspa.2015.0593Suche in Google Scholar PubMed PubMed Central

[20] Wang, G.—Xu, Y.: Periodic stabilization for linear time-periodic ordinary differential equations, ESAIM: COCV 20 (2014), 269–314.10.1051/cocv/2013064Suche in Google Scholar

[21] Zabczyk, J.: Mathematical Control Theory: An Introduction. Systems and Control: Foundations and Applications, Birkhauser Boston, Inc., Boston, MA, 1992.Suche in Google Scholar

Received: 2020-11-13
Accepted: 2021-03-29
Published Online: 2022-03-28
Published in Print: 2022-04-26

© 2022 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2022-0026/html
Button zum nach oben scrollen