Startseite On rapidly oscillating solutions of a nonlinear elliptic equation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On rapidly oscillating solutions of a nonlinear elliptic equation

  • Houssem Eddine Kadem und Saida Bendaas EMAIL logo
Veröffentlicht/Copyright: 10. Dezember 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The aim of this article is to examine the solutions of the boundary value problem of the nonlinear elliptic equation ε2u = f(u). We describe the asymptotic behavior as ε tends to zero of the solutions on a spherical crown C of RN, (N ≥ 2) in a direct non-classical formulation which suggests easy proofs. We propose to look for interesting solutions in the case where the condition at the edge of the crown is a constant function. Our results are formulated in classical mathematics.Their proofs use the stroboscopic method which is a tool of the nonstandard asymptotic theory of differential equations.

  1. Communicated by Alberto Lastra

References

[1] Bendaas, S.—Alaa, N.: Periodic wave shock solutions of Burgers equations, A new approach, Int. J. Nonlinear Anal. Appl. 10(1) (2019), 119–129.10.1080/25742558.2018.1463597Suche in Google Scholar

[2] Bendaas, S.: Confluence of shocks in Burgers equation. A new approach, Int. J. Differ. Equ. 14(N4) (2015), 369–382.Suche in Google Scholar

[3] Bendaas, S.: Boundary value problems for Burgers equations through nonstandard analysis, Appl. Math. N6 (2015), 1086–1098.10.4236/am.2015.66099Suche in Google Scholar

[4] Bendaas, S.: Léquation de Burgers avec un terme dissipatif. Une approche non standard, An. Univ. Oradea Fasc. Mat. 15 (2008), 239–252.Suche in Google Scholar

[5] Bendaas, S.: Quelques Applications de l’A.N.S aux E.D.P, Thèse de Doctorat. Université de Haute Alsace, France, 1994.Suche in Google Scholar

[6] Callot, J. L.: Stroboscopie infinitésimale, (Strasbourg-Obernai, 1995), 95–124. Prépubl. Inst. Rech. Math. Av., 1995/13, Univ.Louis Pasteur, Strasbourg, 1995.Suche in Google Scholar

[7] Callot, J. L.—Sari, T.: Stroboscopie infinitésimale et moyennisation dans les systèmes déquations différentielles à solutions rapidement oscillantes. In: Outils et modèles mathématiques pour l’automatique, l’analyse des systèmes et le traitement du signal (I. D. Landau, ed.), vol. 3, Editions du CNRS, 1983, pp. 345–353.Suche in Google Scholar

[8] Carrier, G. F.—Pearson, C. E.: Ordinary Differential Equations, Blaisdell Waltham, 1968.Suche in Google Scholar

[9] De Jager, E. M.: Singular Perturbations Problems for linear Differential Equations of Elliptic Type, Arch. Rat. Mech. Anal. 23 (1966).10.1007/BF00281135Suche in Google Scholar

[10] Diener, M.—Lobry, C.: Actes de l’Ecole d’Eté: Analyse Non Standard et Représentation du Réel, Proceeding of the Summer School on Nonstandard Analysis and Representation of the Real, Office des Publications Universitaires, Alger, 1985.Suche in Google Scholar

[11] Diener, M.—Lobry, C.: Nonstandard Analysis in Practice, Chapters 4 and 10, Universitext, Springer Verlag, 1995.10.1007/978-3-642-57758-1Suche in Google Scholar

[12] Fife, P. C.—Greenlee, W. M.: Interior Transition Layers for Elliptic Boundary Value Problems with a Small parameter, Russian Math. Surveys 29(4) (1974), 130.10.1070/RM1974v029n04ABEH001291Suche in Google Scholar

[13] Lakrib, M.—Sari, T.: Time averaging for ordinary differental equations and retard functional differential equations, Electron. J. Differential Equations 2010(40) (2010), http://ejde.math.txstate.edu or http://ejde.math.unt.edu.Suche in Google Scholar

[14] Lutz, R.—Sari, T.: Application of Non Standard Analysis to Boundary Value Problems in Singular Perturbations Theory, Proceeding Oberwolfach 1981, edited by W. Eckhaus and E. M. Dejager, Lectures Notes in Math. 942, Springer Verlag Berlin, 1982, pp. 113–135.10.1007/BFb0094743Suche in Google Scholar

[15] Lutz, R.—Goze, M.: Nonstandard Analysis: A Practical Guide with Applications, Lecture Notes in Math. 881, Springer-Verlag, Berlin, 1981.10.1007/BFb0093397Suche in Google Scholar

[16] Malley, R. E. O.: Phase-plane solutions to some singular perturbation problem, J. Math. Anal. Appl. 54 (1976), 449–466.10.1016/0022-247X(76)90214-6Suche in Google Scholar

[17] Nelson, E.: Internal Set Theory: a new approach to nonstandard analysis, Bull. Amer. Math. Soc. 83(6) (1977), 1165–1198.10.1090/S0002-9904-1977-14398-XSuche in Google Scholar

[18] Nouri, Z.—Bendaas, S.—Kadem, H. E.: N wave and periodic wave solutions for Burgers equations, Int. J. Anal. Appl. 18(2) (2020), 304–318.Suche in Google Scholar

[19] Reeb, G.: Equations Différentielles et Analyse Non Standard, Proceeding of the IV-Int Colloque on Differential Geometry, Santiago de Compostella, 1978.Suche in Google Scholar

[20] Robinson, A.: Nonstandard Analysis, American Elsevier, New York, 1974.Suche in Google Scholar

[21] Sari, T.: Moyennisation Dans les Systè mes Différentiels à Solutions Rapidement Oscillantes, Thèse de Doctorat, Mulhouse, 1983.Suche in Google Scholar

[22] Sari, T.: Nonstandard perturbation theory of differential equations, presented as an invited talk at the International Research Symposium on Nonstandard Analysis and Its Applications, ICMS, Edinburgh 1996, http://www.math.uha.fr/sari/papers/icms1996.pdf.Suche in Google Scholar

[23] van den Berg, I. P.: Nonstandard Asymptotic Analysis. Lecture Notes in Math. 1249, Springer-Verlag, Berlin, 1987.10.1007/BFb0077577Suche in Google Scholar

Received: 2020-06-17
Accepted: 2021-02-02
Published Online: 2021-12-10
Published in Print: 2021-12-20

© 2021 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 28.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2021-0062/pdf
Button zum nach oben scrollen