Home Multiplicity of solutions for a class of fourth-order elliptic equations of p(x)-Kirchhoff type
Article
Licensed
Unlicensed Requires Authentication

Multiplicity of solutions for a class of fourth-order elliptic equations of p(x)-Kirchhoff type

  • Nguyen Thanh Chung EMAIL logo and Zohreh Naghizadeh
Published/Copyright: December 10, 2021
Become an author with De Gruyter Brill

Abstract

This paper deals with a class of fourth order elliptic equations of Kirchhoff type with variable exponent

Δp(x)2uM(Ω1p(x)|u|p(x)dx)Δp(x)u+|u|p(x)2u=λf(x,u)+μg(x,u) in Ω,u=Δu=0 on Ω,

where p:=infxΩ¯p(x)>max1,N2,λ>0 and μ ≥ 0 are real numbers, Ω ⊂ ℝN (N ≥ 1) is a smooth bounded domain, Δp(x)2u=Δ(|Δu|p(x)2Δu) is the operator of fourth order called the p(x)-biharmonic operator, Δp(x)u = div(|∇u|p(x)–2u) is the p(x)-Laplacian, p : Ω → ℝ is a log-Hölder continuous function, M : [0, +∞) → ℝ is a continuous function and f, g : Ω × ℝ → ℝ are two L1-Carathéodory functions satisfying some certain conditions. Using two kinds of three critical point theorems, we establish the existence of at least three weak solutions for the problem in an appropriate space of functions.

  1. Communicated by Alberto Lastra

References

[1] Afrouzi, G. A.—Mirzapour, M.—Chung, N. T.: Existence and multiplicity of solutions for Kirchhoff type problems involving p(x)-biharmonic operators, Z. Anal. Anwend. 33 (2014), 289–303.10.4171/ZAA/1512Search in Google Scholar

[2] Ambrosetti, A.—Rabinowitz, P. H.: Dual variational methods in critical points theory and applicationss, J. Funct. Anal. 14 (1973), 349–381.10.1016/0022-1236(73)90051-7Search in Google Scholar

[3] Avci, M.—Cekic, B.—Mashiyev, R. A.: Existence and multiplicity of the solutions of the p(x)-Kirchhoff type equation via genus theory, Math. Methods Appl. Sci. 34(14) (2011), 1751–1759.10.1002/mma.1485Search in Google Scholar

[4] Ayoujil, A.—Amrouss, A. R. E.: On the spectrum of a fourth order elliptic equation with variable exponent, Nonlinear Anal. (TMA) 71(14) (2009), 4916–4926.10.1016/j.na.2009.03.074Search in Google Scholar

[5] Bae, J. H.—Kim, J. M.—Lee, J.—Part, K.: Existence of nontrivial weak solutions for p-biharmonic Kirchhoff-type equations, Bound. Value Probl. 2019 (2019), 125.10.1186/s13661-019-1237-6Search in Google Scholar

[6] Ball, J.: Initial-boundary value for an extensible beam, J. Math. Anal. Appl. 42 (1973), 61–90.10.1016/0022-247X(73)90121-2Search in Google Scholar

[7] Bonanno, G.—Bisci, G. M.: Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl. 2009 (2009), Art. ID 670675.10.1155/2009/670675Search in Google Scholar

[8] Bonanno, G.: A critical point theorem via the Ekeland variational principles, Nonlinear Anal. (TMA) 75 (2012), 2292–3007.10.1016/j.na.2011.12.003Search in Google Scholar

[9] Bonanno, G.—Candito, P.: Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities, J. Differ. Equ. 244 (2008), 3031–3059.10.1016/j.jde.2008.02.025Search in Google Scholar

[10] Bonanno, G.—Marano, S. A.: On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal. 89 (2010), 1–10.10.1080/00036810903397438Search in Google Scholar

[11] Boureanu, M. M.—Rădulescu, V.—Repovš, D. D.: On a (·)-biharmonic problem with no-flux boundary condition, Comput. Math. Appl. 72 (2016), 2505–2515.10.1016/j.camwa.2016.09.017Search in Google Scholar

[12] Chung, N. T.: Multiple solutions for a p(x)-Kirchhoff-type equation with sign-changing nonlinearities, Complex Var. Elliptic Equ. 58(12) (2013), 1637–1646.10.1080/17476933.2012.701289Search in Google Scholar

[13] Chung, N. T.: Existence of solutions for perturbed fourth order elliptic equations with variable exponents, Electron. J. Qual. Theory Differ. Equ. 2018(96) (2018), 1–19.10.14232/ejqtde.2018.1.96Search in Google Scholar

[14] Chung, N. T.: Infinitely many solutions for a class of p(x)-Kirchhoff type problems with critical exponents, Ann. Polon. Math. 124 (2020), 129–149.10.4064/ap180827-11-6Search in Google Scholar

[15] Chung, N. T.: Multiple solutions for a fourth order elliptic equation of Kirchhoff type with variable exponent, Asian-European J. Math. 13(5) (2020). Art. ID 2050096.10.1142/S1793557120500965Search in Google Scholar

[16] Chung, N. T.: Infinitely many solutions for some fourth order elliptic equations of p(x)-Kirchhoff type, Differ. Equ. Dyn. Syst. (2020); https://doi.org/10.1007/s12591-019-00513-8.10.1007/s12591-019-00513-8Search in Google Scholar

[17] Dai, G.: Three solutions for a nonlocal Dirichlet boundary value problem involving the p(x)-Laplacian, Appl. Anal. 92 (2013), 191–210.10.1080/00036811.2011.602633Search in Google Scholar

[18] Diening, L.—Harjulehto, P.—Hästö, P.—Ružička, M.: Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math. 2017, Springer-Verlag, Berlin, 2011.10.1007/978-3-642-18363-8Search in Google Scholar

[19] Ekeland, I.: On the variational principle, J. Math. Anal. Appl. 47 (1974), 324–353.10.1016/0022-247X(74)90025-0Search in Google Scholar

[20] Ferrara, M.—Khademloo, S.—Heidarkhani, S.: Multiplicity results for perturbed fourth-order Kirchhoff type elliptic problems, Appl. Math. Comput. 234 (2014), 316–325.10.1016/j.amc.2014.02.041Search in Google Scholar

[21] Hamdani, M. K.—Harrabi, A.—Mtiri, F.—Repovs̆, D. D.: Existence and multiplicity results for a new p(x)-Kirchhoff problem, Nonlinear Anal. 190 (2020), 111598.10.1016/j.na.2019.111598Search in Google Scholar

[22] Heidarkhani, S.—Khademloo, S.—Solimaninia, A.: Multiple solutions for a perturbed fourth-order Kirchhoff type elliptic problem, Portugal. Math. (N.S.) 71(1) (2014), 39–61.10.4171/PM/1940Search in Google Scholar

[23] Heidarkhani, S.—Ferrara, M.—Salari, A.—Caristi, G.: Multiplicity results for p(x)-biharmonic equations with Navier boundary conditions, Complex Var. Elliptic Equ. 61(11) (2016), 1494–1516.10.1080/17476933.2016.1182520Search in Google Scholar

[24] Kováčik, O.—Rákosník, J.: On spaces Lp(x) and W1,p(x), Czechoslovak Math. J. 41 (1991), 592–618.10.21136/CMJ.1991.102493Search in Google Scholar

[25] Liang, S.—Zhang, Z.: Existence and multiplicity of solutions for fourth-order elliptic equations of Kirchhoff type with critical growth inN, J. Math. Phys. 57 (2016), 111505.10.1063/1.4967976Search in Google Scholar

[26] Massar, M.—Hssini, El. M.—Tsouli, N.—Talbi, M.: Infinitely many solutions for a fourth-order Kirchhoff type elliptic problem, J. Math. Comput. Sci. 8 (188) (2014), 33–51.10.22436/jmcs.08.01.04Search in Google Scholar

[27] Rădulescu, V. D.—Repovš, D. D.: Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, CRC Press, Boca Raton, 2015.10.1201/b18601Search in Google Scholar

[28] Wang, F.—An, Y.: Existence and multiplicity of solutions for a fourth-order elliptic equation, Bound. Value Probl. 2012 (2012), Art. No. 6.10.1186/1687-2770-2012-6Search in Google Scholar

[29] Wang, F.—Avci, M.—An, Y.: Existence of solutions for fourth-order elliptic equations of Kirchhoff type, J. Math. Anal. Appl. 409 (2014), 140–146.10.1016/j.jmaa.2013.07.003Search in Google Scholar

[30] Wu, D. L.—Li, F.: Solutions for fourth-order Kirchhoff type elliptic equations involving concave-convex nonlinearities inN, Comput. Math. Appl. 79(2) (2020), 489–499.10.1016/j.camwa.2019.07.007Search in Google Scholar

[31] Xu, L.—Chen, H.: Multiple solutions for the nonhomogeneous fourth order elliptic equations of Kirchhoff-type, Taiwanese J. Math. 19(4) (2015), 1215–1226.10.11650/tjm.19.2015.4716Search in Google Scholar

[32] Yin, H.—Xu, M.: Existence of three solutions for a Navier boundary value problem involving the p(x)-biharmonic operator, Ann. Polon. Math. 109 (2013), 47–54.10.4064/ap109-1-4Search in Google Scholar

[33] Zang, A.—Fu, Y.: Interpolation inequalities for derivatives in variable exponent Lebesgue-Sobolev spaces, Nonlinear. Anal. (TMA) 69 (2008), 3629–3636.10.1016/j.na.2007.10.001Search in Google Scholar

[34] Zhang, W.—Tang, X.—Cheng, B.—Zhang, J.: Sign-changing solutions for fourth order elliptic equations with Kirchhoff-type, Comm. Pure Appl. Anal. 15(6) (2016), 2161–2177.10.3934/cpaa.2016032Search in Google Scholar

[35] Zeidler, E.: Nonlinear Functional Analysis and its Applications, Vol. II, Springer, Berlin-Heidelberg-New York, 1985.10.1007/978-1-4612-5020-3Search in Google Scholar

Received: 2020-05-14
Accepted: 2021-01-28
Published Online: 2021-12-10
Published in Print: 2021-12-20

© 2021 Mathematical Institute Slovak Academy of Sciences

Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2021-0063/html
Scroll to top button