Startseite On absolute double summability methods with high indices
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On absolute double summability methods with high indices

  • Mehmet Ali Sarigöl
Veröffentlicht/Copyright: 10. Dezember 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In a recent paper, [Sarigöl, M. A.: Characterization of summability methods with high indices, Math. Slovaca 63 (2013), 1053–1058], the equivalence ∣C, 0∣k ⟺ ∣R, pnk, k ≥ 1, was characterized for infinite single series. In the present paper, this result is extended to doubly summability a different approach.

  1. (Communicated by Gregor Dolinar )

References

[1] Bor, H.: Some equivalence theorems on absolute summability methods, Acta Math. Hungar. 149 (2016), 208–214.10.1007/s10474-016-0582-5Suche in Google Scholar

[2] Bor, H.—Thorpe, B.: On some absolute summability methods, Analysis 7 (1987), 145–152.10.1524/anly.1987.7.2.145Suche in Google Scholar

[3] Bosanquet, L. S.: Review on G. Sunouchi’s paper – Notes on Fourier analysis (XVIII): Absolute summability of series with constant terms, Mathematical Reviews 11 (1950), 654.Suche in Google Scholar

[4] Flett, T. M.: On an extension of absolute summability and theorems of Littlewood and Paley, Proc. London Math. Soc. 7 (1957), 113–141.10.1112/plms/s3-7.1.113Suche in Google Scholar

[5] Rhoades, B. E.: Absolute comparison theorems for double weighted mean and double Cesàro means, Math. Slovaca 48 (1998), 285–291.Suche in Google Scholar

[6] Rhoades, B. E.: On absolute normal double matrix summability methods, Glas. Mat. 38 (2003), 57–73.10.3336/gm.38.1.06Suche in Google Scholar

[7] Sarigöl, M. A.: Characterization of summability methods with high indices, Math. Slovaca 63 (2013), 1053–1058.10.2478/s12175-013-0154-xSuche in Google Scholar

[8] Sarigöl, M. A.: Necessary and sufficient conditions for the equivalence of the summability methodsN, pnk andC, 1∣k, Indian J. Pure Appl. Math. 22(6) (1991), 483–489.Suche in Google Scholar

[9] Sarigöl, M. A.: On two absolute Riesz summability factors of infinite series, Proc. Amer. Math. Soc. 118 (1993), 485–488.10.1090/S0002-9939-1993-1127143-8Suche in Google Scholar

[10] Sarigöl, M. A.: On inclusion relations for absolute weighted mean summability, J. Math. Anal. Appl. 181 (1994), 762–767.10.1006/jmaa.1994.1056Suche in Google Scholar

[11] Sulaiman, W. T.: On summability factors of infinite series, Proc. Amer. Math. Soc. 115 (1992), 313–317.10.1090/S0002-9939-1992-1045602-2Suche in Google Scholar

[12] Sunouchi, G.: Notes on Fourier analysis (XVIII): Absolute summability of series with constant terms, Tohoku Math. J. 2(1) (1949), 57–65.10.2748/tmj/1178245769Suche in Google Scholar

Received: 2020-02-13
Accepted: 2021-05-10
Published Online: 2021-12-10
Published in Print: 2021-12-20

© 2021 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 18.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2021-0065/html
Button zum nach oben scrollen