Startseite On Z-Symmetric Rings
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On Z-Symmetric Rings

  • Avanish Kumar Chaturvedi , Nirbhay Kumar EMAIL logo und K. P. Shum
Veröffentlicht/Copyright: 10. Dezember 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We introduce the concept of Z-symmetric rings. In fact, the classes of all semicommutative rings, nil rings, reduced rings, Artinian rings and eversible rings are Z-symmetric rings. In order to sustain our assertion, we provide a number of examples of Z-symmetric and non Z-symmetric rings. We observe that the class of Z-symmetric rings lies strictly between the classes of eversible rings and the Dedekind finite rings. In particular, we consider the extensions of Z-symmetric rings. Finally, some new results between the Z-symmetric rings and Armendariz rings will be explored and investigated.

MSC 2010: Primary 16U99; 16E50

The research of the second author was supported by a grant from University Grants Commission, India (UGC Ref. No.: 1211(CSIR-UGC NET DEC. 2018)).


  1. (Communicated by Miroslav Ploščica)

Acknowledgement

We thank to the referee who read the paper carefully and made thoughtful suggestions.

References

[1] Antoine, R.: Examples of Armendariz rings, Comm. Algebra 38 (2010), 4130–4143.10.1080/00927870903337968Suche in Google Scholar

[2] Bourbaki, N.: Algebra I: chapters 1–3, Springer-Verlag, New York, 1989.Suche in Google Scholar

[3] Brown, W. C.: Matrices over Commutative Rings, Marcel Dekker Inc., New York, 1993.Suche in Google Scholar

[4] Camillo, V.—Nielsen, P. P.: McCoy rings and zero-divisors, J. Pure Appl. Algebra 212 (2008), 599–615.10.1016/j.jpaa.2007.06.010Suche in Google Scholar

[5] Cohn, P. M.: Reversible rings, Bull. London Math. Soc. 31 (1999), 641–648.10.1112/S0024609399006116Suche in Google Scholar

[6] Dorroh, J. L.: Concerning adjunctions to algebras, Trans. Amer. Math. Soc. 26 (1932), 85–88.10.1090/S0002-9904-1932-05333-2Suche in Google Scholar

[7] Ghashghaei, E.—Kosan, M. T.—Namdari, M.—Yildirim, T.: Rings in which every left zero-divisor is also a right zero-divisor and conversely, J. Algebra Appl. 18 (2019), 1950096:1-14.10.1142/S0219498819500968Suche in Google Scholar

[8] Goodearl, K. R.: Von Neumann Regular Rings, Pitman Publishing Ltd., London, 1979.Suche in Google Scholar

[9] Huang, Q.—Tang, G.—Zhou, Y.: Quasipolar property of generalized matrix ring, Comm. Algebra 42 (2014), 3883–3894.10.1080/00927872.2013.796964Suche in Google Scholar

[10] Kim, N. K.—Lee, Y.: Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), 207–223.10.1016/S0022-4049(03)00109-9Suche in Google Scholar

[11] Lam, T. Y.: A First Course in Noncommutative Rings, 2nd ed., Grad. Texts in Math. 131, Springer-Verlag, New York, 2001.10.1007/978-1-4419-8616-0Suche in Google Scholar

[12] Lam, T. Y.: Exercises in Modules and Rings. Problem Books in Mathematics, Springer, New York, 2007.10.1007/978-0-387-48899-8Suche in Google Scholar

[13] Lambek, J.: On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359–368.10.4153/CMB-1971-065-1Suche in Google Scholar

[14] Marks, G.: Reversible and symmetric rings, J. Pure Appl. Algebra 174 (2002), 311–318.10.1016/S0022-4049(02)00070-1Suche in Google Scholar

[15] Ozen, T.—Agayev, N.—Harmanci, A.: On a class of semicommutative rings, Kyungpook Math. J. 51 (2011), 283–291.10.5666/KMJ.2011.51.3.283Suche in Google Scholar

[16] Rege, M. B.—Chhawchharia, S.: Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), 14–17.10.3792/pjaa.73.14Suche in Google Scholar

[17] Shepherdson, J. C.: Inverses and zero divisors in matrix rings, Proc. London Math. Soc. 3 (1951), 71–85.10.1112/plms/s3-1.1.71Suche in Google Scholar

[18] Zhao, L.—Zhu, X.—Gu, Q.: Reflexive rings and their extensions, Math. Slovaca 63 (2013), 417–430.10.2478/s12175-013-0106-5Suche in Google Scholar

Received: 2020-05-31
Accepted: 2021-07-16
Published Online: 2021-12-10
Published in Print: 2021-12-20

© 2021 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2021-0058/html
Button zum nach oben scrollen