Startseite De la Vallée Poussin inequality for impulsive differential equations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

De la Vallée Poussin inequality for impulsive differential equations

  • Sibel Doğru Akgöl EMAIL logo und Abdullah Özbekler
Veröffentlicht/Copyright: 1. August 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The de la Vallée Poussin inequality is a handy tool for the investigation of disconjugacy, and hence, for the oscillation/nonoscillation of differential equations. The results in this paper are extensions of former those of Hartman and Wintner [Quart. Appl. Math. 13 (1955), 330–332] to the impulsive differential equations. Although the inequality first appeared in such an early date for ordinary differential equations, its improved version for differential equations under impulse effect never has been occurred in the literature.

In the present study, first, we state and prove a de la Vallée Poussin inequality for impulsive differential equations, then we give some corollaries on disconjugacy. We also mention some open problems and finally, present some examples that support our findings.

MSC 2010: 34A37; 34A40

aozbekler@gmail.com


  1. (Communicated by Michal Fečkan)

Acknowledgement

The authors would like to express their sincere gratitude to the Anonymous Referees for their valuable comments and helpful suggestions.

References

[1] AGARWAL, R. P. — JLELI, M. — SAMET, B.: On de la Vallée Poussin-type inequalities in higher dimension and applications, Appl. Math. Lett. 86 (2018), 264–269.10.1016/j.aml.2018.07.015Suche in Google Scholar

[2] AGARWAL, R. P. — ÖZBEKLER, A.: Disconjugacy via Lyapunov and Vallée-Poussin-type inequalities for forced differential equations, Appl. Math. Comput. 265 (2015), 456–468.10.1016/j.amc.2015.05.038Suche in Google Scholar

[3] AKHMETOV, M. — SEJILOVA, R.: The control of the boundary value problem for linear impulsive integro-differential equations, J. Math. Anal. Appl. 236 (1999), 312–326.10.1006/jmaa.1999.6428Suche in Google Scholar

[4] BÁŇA, L. — DOŠLÝ, O.: De la Vallée Poussin-type inequality and eigenvalue problem for generalized half-linear differential equation, Arch. Math. (Brno) 50(4) (2014), 193–203.10.5817/AM2014-4-193Suche in Google Scholar

[5] DOŠLÝ, O. — LOMTATIDZE A.: Disconjugacy and disfocality criteria for singular half-linear second order differential equations, Ann. Polon. Math. 72 (1999), 273–284.10.4064/ap-72-3-273-284Suche in Google Scholar

[6] FERREIRA, R. A. C.: A de la Vallée Poussin Type Inequality on Time Scales, Results Math. 73(3) (2018), Art. 88.10.1007/s00025-018-0851-4Suche in Google Scholar

[7] FERREIRA, R. A. C.: Fractional de la Vallée Poussin Inequalities, 22(3) (2019), 917–930.10.7153/mia-2019-22-62Suche in Google Scholar

[8] GUSEINOV, G. SH. — ZAFER, A.: Stability criterion for second order linear impulsive differential equations with periodic coefficients, Math. Nachr. 281(9) (2008), 1273–1282.10.1002/mana.200510677Suche in Google Scholar

[9] HARTMAN, P. — WINTNER A.: On an oscillation criterion of de la Vallée Poussin, Quart. Appl. Math. 13 (1955), 330–332.10.1090/qam/73773Suche in Google Scholar

[10] POUSSIN, D. V.: Sur l’équation différentielle linéqire du second order. Détermination d’une intégrale par deux valuers assignés. Extension aux équasions d’ordre n, J. Math. Pures Appl. 8 (1929), 125–144.Suche in Google Scholar

Received: 2020-09-04
Accepted: 2020-10-05
Published Online: 2021-08-01
Published in Print: 2021-08-26

© 2021 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 14.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2021-0028/html
Button zum nach oben scrollen