Home The sine extended odd Fréchet-G family of distribution with applications to complete and censored data
Article
Licensed
Unlicensed Requires Authentication

The sine extended odd Fréchet-G family of distribution with applications to complete and censored data

  • Farrukh Jamal , Christophe Chesneau EMAIL logo and Khaoula Aidi
Published/Copyright: August 4, 2021
Become an author with De Gruyter Brill

Abstract

In this paper, we introduce the sine extended odd Fréchet-G family of distributions, obtained from two well-established families of distributions of completely different nature: the sine-G and the extended odd Fréchet-G families. A particular focus is put on a very flexible member of this family defin ed with the Nadarajah-Haghighi distribution as a baseline, called the sine extended odd Fréchet Nadarajah-Haghighi distribution. For the theoretical part, the interesting mathematical properties of the family are investigated, including asymptotes, quantile function, linear representations and moments, with application to the introduced special member. Then, the inferential aspects of the sine extended odd Fréchet Nadarajah-Haghighi model are examined. In particular, the parameters are estimated by the maximum likelihood method. Two complementary cases are distinguished: the complete data case and the right censored data case, with the development of appropriate statistical tests. A simulation study is carried out to illustrate the convergence of the obtained estimates. Applications are given for three practicaldata sets, including one having the right censored property, illustrating the applicability of the proposed model.

  1. (Communicated by Gejza Wimmer)

Acknowledgement

We thank the reviewers for the constructive comments and suggestions which made the paper more substantial and interesting.

References

[1] Alrajhi, S.: The odd Fréchet inverse exponential distribution with application, J. Nonlinear Sci. Appl. 12 (2019), 535–542.10.22436/jnsa.012.08.04Search in Google Scholar

[2] Bagdonavičius, V.—Nikulin, M.: Chi-squared goodness-of-fit test for right censored data, Int. J. Appl. Math. Stat. 24 (2011), 30–50.Search in Google Scholar

[3] Bjerkedal, T.: Acquisition of resistance in guinea pigs infected with different doses of virulent tubercle bacilli, Am. J. Hyg. 72 (1960), 130–148.10.1093/oxfordjournals.aje.a120129Search in Google Scholar

[4] Birnbaum, Z. W.—Saunders, S. C.: Estimation for a family of life distribution with applications to fatigue, J. Appl. Probab. 6 (1969), 328–347.10.2307/3212004Search in Google Scholar

[5] Bourguignon, M.—Lima, M. D. C. S.—Lé, J.—Nascimento, A. D. C.—Pinho, L. G. B.—Cordeiro, G. M.: A new generalized gamma distribution with applications, Amer. J. Math. Management Sci. 34 (2015), 309–342.10.1080/01966324.2015.1040178Search in Google Scholar

[6] Brito, C. R.—Rêgo, L. C.—Oliveira, W. R.—Gomes-Silva, F.: Method for generating distributions and classes of probability distributions: The univariate case, Hacet. J. Math. Stat. 48 (2019), 897–930.10.15672/HJMS.2018.619Search in Google Scholar

[7] Diouma Sira, K. A.—Orwa, G. O.—Ngesa, O.: Exponentiated Nadarajah-Haghighi Poisson distribution, International Journal of Statistics and Probability 8 (2019), 34–48.10.5539/ijsp.v8n5p34Search in Google Scholar

[8] Elsayed, H. A. H.—Yousof, H. M.: The Burr X Nadarajah-Haghighi distribution: Statistical properties and application to the exceedances of flood peaks data, Int. J. Math. Stat. 15 (2019), 146–157.10.3844/jmssp.2019.146.157Search in Google Scholar

[9] Gupta, R. D.—Kundu, D.: Exponentiated exponential family: an alternative to Gamma and Weibull distributions, Biom. J. 43 (2001), 117–130.10.1002/1521-4036(200102)43:1<117::AID-BIMJ117>3.0.CO;2-RSearch in Google Scholar

[10] Haq, M. A.—Elgarhy, M.: The odd Fréchet-G family of probability distributions, J. Stat. Appl. Probab. 7 (2018), 189–203.10.18576/jsap/070117Search in Google Scholar

[11] Klein, J. P.—Moeschberger, M. L.: Survival Analysis: Techniques for Censored and Truncated Data, Statistics for Biology and Health, Springer, 1997.10.1007/978-1-4757-2728-9Search in Google Scholar

[12] Kumar, D.—Singh, U.—Singh, S. K.: A new distribution using sine function: its application to bladder cancer patients data, J. Stat. Appl. Probab. 4 (2015), 417–427.Search in Google Scholar

[13] Lemonte, A.: A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function, Comput. Statist. Data Anal. 62 (2013), 149–170.10.1016/j.csda.2013.01.011Search in Google Scholar

[14] Mead, M. E.: On five-parameter Lomax distribution: properties and applications, Pak. J. Stat. Oper. Res. 1 (2016), 185–199.10.18187/pjsor.v11i4.1163Search in Google Scholar

[15] Nadarajah, S.—Haghighi, F.: An extension of the exponential distribution, Statistics 45 (2011), 543–558.10.1080/02331881003678678Search in Google Scholar

[16] Nasiru, S.: Extended odd Fréchet-G family of distributions, J. Probab. Stat. 1 (2018), 1–12.10.1155/2018/2931326Search in Google Scholar

[17] Ristíc, M. R.—Balakrishnan, N.: The gamma-exponentiated exponential distribution, J. Stat. Comput. Simul. 82 (2012), 1191–1206.10.1080/00949655.2011.574633Search in Google Scholar

[18] Souza, L.: New Trigonometric Classes of Probabilistic Distributions, Thesis, Universidade Federal Rural de Pernambuco, 2015.Search in Google Scholar

[19] Souza, L.—Junior, W. R. O.—de Brito, C. C. R.—Chesneau, C.—Ferreira, T. A. E.—Soares, L.: On the Sin-G class of distributions: theory, model and application, J. Math. Model. 7 (2019), 357–379.Search in Google Scholar

[20] Tsuang, M. T.—Woolson, R. F.: Mortality in patients with schizophrenia, mania, depression and surgical conditions: A comparison with general population mortality, Br. J. Psychiatry 130 (1977), 162–166.10.1192/bjp.130.2.162Search in Google Scholar PubMed

[21] Voinov, V.—Nikulin, M.—Balakrishnan, N.: Chi-Squared Goodness-of-Fit Tests with Applications, Academic Press, Elsevier, 2013.Search in Google Scholar

Appendix A

After long calculations, we obtain the expressions of the first derivatives of the log-likelihood function with respect to the parameters for complete data. They are given below.

Ln(γ)α=nα(θ1)i=1nuiαln(ui)1uiαθi=1nln(ui)+θi=1nviθln(ui)1uiπθ2i=1nviθtanπ2eviθln(ui)eviθ1uiα,
Ln(γ)λ=nλ+β1i=1nXiziβi=1nziβ1Xi+αβ(θ1)i=1nXi(1ui)ziβ1(1uiα)(αθ+1)i=1nXi(1ui)ziβ1ui+αβθi=1nXiviθ(1ui)ziβ1ui(1uiα)π2αβθi=1nXi(1ui)ziβ1viθeviθui1uiαtanπ2eviθ,
Ln(γ)β=nβ+i=1nln(zi)i=1nziβln(zi)(αθ1)i=1nziβln(zi)(1ui)uiα(θ1)i=1nziβln(zi)(1ui)uiα(1uiα)+αθi=1nviθziβln(zi)(1ui)ui(1uiα)π2αθi=1nziβviθln(zi)(1ui)eviθui1uiαtanπ2eviθ

and

Ln(γ)θ=nθ+i=1nlnvii=1nviθln(vi)+π2i=1nviθlnvieviθtanπ2eviθ.

Appendix B

After long calculations, we obtain the expressions of the first derivatives of the log-likelihood function with respect to the parameters for censored data. They are given below.

Ln(γ)α=i=1nδi[1α+θviθπθ2eviθviθln(ui)tan(π2eviθ)1uiαuiαθln(ui)1uiα+πθ2viθlnuieviθcos(π2eviθ)1uiα1sinπ2evθ]πθ2i=1nviθlnuieviθcos(π2eviθ)1uiα1sin(π2eviθ),
Ln(γ)λ=i=1nδi[1λβziβ1xi+βxi(1ui)ziβ1(αuiααθ+uiα1)ui(1uiα)+(β1)xiziπαβθxi(1ui)ziβ1eviθviθtan(π2eviθ)2ui(1uiα)+αβθxiviθziβ1ui(1uiα)+παβθxi(1ui)ziβ1eviθviθcos(π2eviθ)2ui(1uiα)[1sin(π2eviθ)]]i=1nπαβθxi(1ui)ziβ1eviθviθcos(π2eviθ)2ui(1uiα)[1sin(π2eviθ)],
Ln(γ)β=i=1nδi[ziβln(zi)(1ui)(αuiααθ+uiα1)ui(1uiα)+αθziβln(zi)(1ui)viθui(1uiα)+1β+ln(zi)παθziβln(zi)(1ui)eviθviθtan(π2eviθ)2ui(1uiα)ziβlnzi+π2αθziβln(zi)(1ui)eviθviθcos(π2eviθ)ui(1uiα)[sin(π2eviθ)]]i=1nπαθziβln(zi)(1ui)eviθviθcos(π2eviθ)2ui(1uiα)[1sin(π2eviθ)]

and

Ln(γ)θ=i=1nδi[1θ+ln(vi)+π2viθln(vi)eviθtan(π2eviθ)viθln(vi)π2viθln(vi)eviθcos(π2eviθ)1sin(π2eviθ)]+π2i=1nviθln(vi)eviθcos(π2eviθ)1sin(π2eviθ).

Appendix C

C^1j=1ni:TiIjnδi[1α^+θ^v^iθ^πθ^2ev^iθ^v^iθ^ln(u^i)tan(π2ev^iθ^)1u^iα^(u^iα^θ^)lnu^i1u^iα^+πθ^2v^iθ^ln(u^i)ev^iθ^cos(π2ev^iθ^)(1u^iα^)[1sin(π2ev^iθ^)]],
C^2j=1ni:TiIjnδi[1λβ^z^iβ^1xi+β^xi(1u^i)z^iβ^1(α^u^iα^α^θ+u^iα^1)u^i(1u^iα^)+(β^1)xiz^iπα^β^θxi(1u^i)z^iβ^1ev^iθ^v^iθ^tan(π2ev^iθ^)2u^i(1u^iα^)+α^β^θ^xiv^iθ^z^iβ^1u^i(1u^iα^)+πα^β^θxi(1u^i)z^iβ^1ev^iθ^v^iθ^cos(π2ev^iθ^)2u^i(1u^iα^)[1sin(π2ev^iθ^)]],
C^3j=1ni:TiIjnδi[z^iβ^ln(z^i)(1u^i)(α^u^iα^α^θ^+u^iα^1)u^i(1u^iα^)+α^θ^z^iβ^ln(z^i)(1u^i)v^iθ^u^i(1u^iα^)+1β^+ln(z^i)πα^θ^z^iβ^ln(z^i)(1u^i)ev^iθ^v^iθ^tan(π2ev^iθ^)2u^i(1u^iα^)z^iβ^lnz^i+π2α^θ^z^iβ^ln(z^i)(1u^i)ev^iθ^v^iθ^cos(π2ev^iθ^)u^i(1u^iα^)[1sin(π2ev^iθ^)]],
C^4j=1ni:TiIjnδi[1θ^+ln(v^i)+π2v^iθ^ln(v^i)ev^iθ^tan(π2ev^iθ^)v^iθ^ln(v^i)π2v^iθln(v^i)ev^iθ^cos(π2ev^iθ^)1sin(π2ev^iθ)],

Where

u^i=1e1(1+λ^Xi)β^,e1(1+λ^Xi)β^=1ui,vi=(1uiα^)uiα^,zi=1+λ^Xi,

and

W^l=j=1rC^ljAj1Zj,l=1,,s.
Received: 2020-06-01
Accepted: 2020-09-03
Published Online: 2021-08-04
Published in Print: 2021-08-26

© 2021 Mathematical Institute Slovak Academy of Sciences

Downloaded on 14.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2021-0033/html
Scroll to top button