Home Hs-Boundedness of a class of Fourier Integral Operators
Article
Licensed
Unlicensed Requires Authentication

Hs-Boundedness of a class of Fourier Integral Operators

  • Omar Farouk Aid and Abderrahmane Senoussaoui EMAIL logo
Published/Copyright: August 4, 2021
Become an author with De Gruyter Brill

Abstract

In this paper, we define a particular class of Fourier Integral Operators (FIO for short). These FIO turn out to be bounded on the spaces S (ℝn) of rapidly decreasing functions (or Schwartz space) and S′ (ℝn) of temperate distributions. Results about the composition of FIO with its L2-adjoint are proved. These allow to obtain results about the continuity on the Sobolev Spaces.

  1. (Communicated by Alberto Astra)

References

[1] Abels, H.: Pseudodifferential and Singular Integral Operators: An Introduction with Applications, de Gruyter, Berlin, 2012.10.1515/9783110250312Search in Google Scholar

[2] Aid, O. F.—Senoussaoui, A.: The boundedness of h-admissible Fourier integral operators on Bessel potential spaces, Turk. J. Math. 43 (2019), 2125–2141.10.3906/mat-1904-10Search in Google Scholar

[3] Beals, R.: Spatially inhomogeneous pseudodifferential operators II, Comm. Pure Appl. Math. 27 (1974), 161–205.10.1002/cpa.3160270204Search in Google Scholar

[4] Calderón, A. P.—Vaillancourt, R.: On the boundedness of pseudodifferential operators, J. Math. Soc. Japan. 23 (1971), 374–378.10.2969/jmsj/02320374Search in Google Scholar

[5] Duistermaat, J. J.—Hörmander, L.: Fourier integral operators. II, Acta Math. 128(3–4) (1972), 183–269.10.1007/BF02392165Search in Google Scholar

[6] Durdiev, D. K.: Some multidimensional inverse problems of memory determination in hyperbolic equations, J. Math. Phys. Anal. Geom. 3(4) (2007), 411–423.Search in Google Scholar

[7] Eskin, G. I.: Degenerate elliptic pseudodifferential equations of principal type, Mat. Sb. (N.S.) 82 (1970), 585–628.Search in Google Scholar

[8] Greenleaf, A.—Uhlmann, G.: Estimates for singular Radon transforms and pseudodifferential operators with singular symbols, J. Funct. Anal. 89 (1990), 202–232.10.1016/0022-1236(90)90011-9Search in Google Scholar

[9] Hasanov, M.: A class of unbounded Fourier integral operators, J. Math. Anal. Appl. 225 (1998), 641–651.10.1006/jmaa.1998.6033Search in Google Scholar

[10] Helffer, B.: Théorie spectrale pour des opérateurs globalement elliptiques, Astérisque, vol. 112, Société Mathématiques de France, 1984.Search in Google Scholar

[11] Hörmander, L.: Fourier integral operators I, Acta Math. 127 (1971), 79–183.10.1007/BF02392052Search in Google Scholar

[12] Hörmander, L.: Pseudo-differential Operators and Hypo-elliptic equations, Proc. Symposium on Singular Integrals, Amer. Math. Soc. 10 (1967), 138–183.10.1090/pspum/010/0383152Search in Google Scholar

[13] Hörmander, L.: The Analysis of the Linear Partial Differential Operators, III, Springer-Verlag, Berlin, 1985.Search in Google Scholar

[14] Jordão, T.: Decay of Fourier transforms and generalized Besov spaces, Constr. Math. Anal. 3(1) (2020), 20–35.10.33205/cma.646557Search in Google Scholar

[15] Messiouene, R.—Senoussaoui, A.: The boudedness of a class of semiclassical Fourier integral operators on Besov spaces, Mathematica 61(84) (2019), 156–16810.24193/mathcluj.2019.2.06Search in Google Scholar

[16] Messirdi, B.—Senoussaoui, A.: On the L2 boundedness and L2 compactness of a class of Fourier integral operators, Electron. J. Differ. Equ. 2006(26) (2006), 1–12.Search in Google Scholar

[17] Robert, D.: Autour de l'approximation semi-classique, Birkäuser, 1987.Search in Google Scholar

[18] Speck, F. O.: From sommerfeld diffraction problems to operator factorisation, Constr. Math. Anal. 2(4) (2019), 183–216.10.33205/cma.620578Search in Google Scholar

[19] Zagorodnyuk, S. M.: On a family of hypergeometric Sobolev orthogonal polynomials on the unit circle, Constr. Math. Anal. 3(2) (2020), 75–84.10.33205/cma.690236Search in Google Scholar

Received: 2020-05-20
Accepted: 2020-09-28
Published Online: 2021-08-04
Published in Print: 2021-08-26

© 2021 Mathematical Institute Slovak Academy of Sciences

Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2021-0029/html
Scroll to top button