Home A new two-parameter lifetime distribution with flexible hazard rate function: Properties, applications and different method of estimations
Article
Licensed
Unlicensed Requires Authentication

A new two-parameter lifetime distribution with flexible hazard rate function: Properties, applications and different method of estimations

  • Majid Hashempour EMAIL logo
Published/Copyright: August 4, 2021
Become an author with De Gruyter Brill

Abstract

In this paper, we introduce a new two-parameter lifetime distribution which is called extended Half-Logistic (EHL) distribution. Theoretical properties of this model including the hazard function, quantile function, asymptotic, extreme value, moments, conditional moments, mean residual life, mean past lifetime, residual entropy, cumulative residual entropy and order statistics are derived and studied in details. The maximum likelihood estimates of parameters are compared with various methods of estimations by conducting a simulation study. Finally, two real data sets are illustration the purposes.

  1. (Communicated by Gejza Wimmer)

References

[1] Alizadeh, M.—Emadi, M.—Doostparast, M.: A new two-parameter lifetime distribution: Properties, applications and different method of estimations, Stat. Optim. Inf. Comput. 7(2) (2019), 291–310.10.19139/soic.v7i2.653Search in Google Scholar

[2] Anderson, T. W.—Darling, D. A.: Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes, Ann. Math. Statist. 23(2) (1952), 193–212.10.1214/aoms/1177729437Search in Google Scholar

[3] Balakrishnan, N.: Order statistics from the half logistic distribution, J. Stat. Comput. Simul. 20(4) (1985), 287–309.10.1080/00949658508810784Search in Google Scholar

[4] Cheng, R. C. H.—Amin, N. A. K.: Maximum Product-of-Spacings Estimation with Applications to the Log-normal Distribution, Technical Report, Department of Mathematics, University of Wales, 1979.Search in Google Scholar

[5] Cheng, R. C. H.—Amin, N. A. K.: Estimating parameters in continuous univariate distributions with a shifted origin, J. R. Statist. Soc. B. 3 (1983), 394–403.10.1111/j.2517-6161.1983.tb01268.xSearch in Google Scholar

[6] Choi, K.—Bulgren, W.: An estimation procedure for mixtures of distributions, J. R. Stat. Soc. Ser. B Stat. Methodol. 3 (1968), 444–460.10.1111/j.2517-6161.1968.tb00743.xSearch in Google Scholar

[7] Cordeiro, G. M.—de Castro, M.: A new family of generalized distributions, J. Stat. Comput. Simul. 81(7) (2011), 883–898.10.1080/00949650903530745Search in Google Scholar

[8] Dey, S.—Mazucheli, J.—Nadarajah, S.: Kumaraswamy distribution: different methods of estimation, Comput. Appl. Math. 37 (2018), 2094–2111.10.1007/s40314-017-0441-1Search in Google Scholar

[9] Ghitany, M. E.—Atieh, B.—Nadarajah, S.: Lindley distribution and its application, Math. Comput. Simulation 78 (4) (2008), 493–506.10.1016/j.matcom.2007.06.007Search in Google Scholar

[10] Ghitany, M. E.—Al-Mutairi, D. K.—Balakrishnan, N.—Al-Enezi, L. J.: Power Lindley distribution and associated inference, Comput. Statist. Data Anal. 64 (2013), 20–33.10.1016/j.csda.2013.02.026Search in Google Scholar

[11] Gupta, R. D.—Kundu, D.: Theory and methods: Generalized exponential distributions, Aust. N. Z. J. Stat. 41(2) (1999), 173–188.10.1111/1467-842X.00072Search in Google Scholar

[12] Jones, M. C.: Families of distributions arising from distributions of order statistics, Test 13(1) (2004), 1–43.10.1007/BF02602999Search in Google Scholar

[13] Kang, S. B.—Seo, J. I.: Estimation in an exponentiated half logistic distribution under progressively type–II censoring, Commun. Stat. Appl. Methods 18(5) (2011), 657–666.10.5351/CKSS.2011.18.5.657Search in Google Scholar

[14] Leadbetter, M. R.—Lindgren, G.—Rootzén, H.: Extremes and Related Properties of Random Sequences and Processes, Springer, Science and Business Media, 2012.Search in Google Scholar

[15] Murthy, D. P.—Xie, M.—Jiang, R.: Weibull Models, John Wiley & Sons, 2004.Search in Google Scholar

[16] Nadarajah, S.—Haghighi, F.: An extension of the exponential distribution, Statistics 45(6) (2011), 543–558.10.1080/02331881003678678Search in Google Scholar

[17] Oliveira, J.—Santos, J.—Xavier, C.—Trindade, D.—Cordeiro, G. M.: The McDonald half-logistic distribution: Theory and practice, Commun. Stat. Appl. Methods 45(7) (2016), 2005–2022.10.1080/03610926.2013.873131Search in Google Scholar

[18] Swain, J. J.—Venkatraman, S.—Wilson, J. R.: Least-squares estimation of distribution functions in johnson's translation system, J. Stat. Comput. Simul. 29 (1988), 271–297.10.1080/00949658808811068Search in Google Scholar

Appendix A pdf of competitive models in application section

fESHL(x;α)=2αex(1ex)α1(1+ex)α+1x>0,α>0,fNOLLSHL(x;α,β)=2ex(1+ex)21ex1+exα111ex1+exβ1α+(βα)1ex1+ex1ex1+exα+11ex1+exβ2x>0,α>0,β>0,
fKwSHL(x;α,β)=2αβex(1ex)α1(1+ex)α+11(1ex1+ex)αβ1x>0,α>0,β>0,fBSHL(x;α,β)=2βeβx(1ex)α1B(α,β)(1+ex)α+βx>0,α>0,β>0,fMcSHL(x;α,β,c)=2cex(1ex)αc1B(α,β)(1+ex)αc+11(1ex1+ex)cβ1x>0,α>0,β>0,c>0,fLi(x;α)=α21+α(1+x)eαxx>0,α>0,fPL(x;α,β)=α2β1+αxβ1(1+xβ)eαxβx>0,α>0,β>0,fGE(x;α,β)=αβeαx(1eαx)β1x>0,α>0,β>0,fNH(x;α,β)=αβ(1+αx)β1e1(1+αx)βx>0,α>0,β>0,fLN(x;α,β)=1xβ2πe(log(x)α)22β2x>0,αR,β>0,fGa(x;α,β)=βαΓ(α)xα1eβxx>0,α>0,β>0,fW(x;α,β)=αβ(xβ1eαxβx>0,α>0,β>0.

Appendix B R codes for obtaining start value and finding ML estimators

x <– scan()

1.32 12.37 6.56 5.05 11.58

10.56 21.82 3.60 1.33 12.62

5.36 7.71 3.53 19.61 36.63

0.39 21.35 7.22 12.42 8.92

hist(x, prob=T)

#————————-

pdf_EHL <– function(x, alpha, beta){

 A=(1–exp(–alpha*x))/(1+exp(–beta*x))

 B=(alpha*exp(–alpha*x)+beta*exp(–beta*x)+

 (alpha–beta)*exp(–(alpha+beta)*x))/(1+exp(–beta*x))^2

return(B)

}

library(”GenSA”)

fit.sa4 <– function(data,density) {

minusllike <– function(x) –sum(log(density(data, x[1], x[2])))

lower <– c(0.001,0.001) #may need some changes here

upper <– c(1000,1000)

out <– GenSA(lower = lower, upper = upper,

fn = minusllike, control=list(verbose=TRUE,max.time=2))

return(out[c(”value”,”par”,”counts”)])

}

fit.sa4(x, pdf_EHL)

#———————-

library(”AdequacyModel”)

cdf_EHL <– function(par, x){

 alpha=par[1]

 beta=par[2]

 A=(1–exp(–alpha*x))/(1+exp(–beta*x))

 B=(alpha*exp(–alpha*x)+beta*exp(–beta*x)+

 (alpha–beta)*exp(–(alpha+beta)*x))/(1+exp(–beta*x))^2

return(A)

 }

pdf_EHL <– function(par, x){

 alpha=par[1]

beta=par[2]

 A=(1–exp(–alpha*x))/(1+exp(–beta*x))

 B=(alpha*exp(–alpha*x)+beta*exp(–beta*x)+

 (alpha–beta)*exp(–(alpha+beta)*x))/(1+exp(–beta*x))^2

return(B)

}

goodness.fit(pdf=pdf_EHL, cdf=cdf_EHL,

     starts=c(0.1147411, 0.1751693), data = x,

     method=”B”, domain=c(0, Inf), mle=NULL)

Received: 2020-06-13
Accepted: 2020-09-23
Published Online: 2021-08-04
Published in Print: 2021-08-26

© 2021 Mathematical Institute Slovak Academy of Sciences

Downloaded on 16.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2021-0034/html
Scroll to top button