Startseite Mathematik Mapping properties of the Bergman projections on elementary Reinhardt domains
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Mapping properties of the Bergman projections on elementary Reinhardt domains

  • Shuo Zhang EMAIL logo
Veröffentlicht/Copyright: 1. August 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The elementary Reinhardt domain associated to multi-index k = (k1, …, kn) ∈ n is defined by

(k):={zDn:zkis defined and|zk|<1}.

In this paper, we study the mapping properties of the associated Bergman projection on Lp spaces and Lp Sobolev spaces of order ≥ 1.

MSC 2010: 32A36; 32A25; 32W05

Acknowledgement

The author thanks his Ph.D. advisor Prof. Feng Rong for helpful comments and suggestions to this manuscript. The author also thanks the referees for many useful comments.

  1. (Communicated by Gregor Dolinar)

References

[1] Barrett, D. E.: Behavior of the Bergman projection on the Diederich-Fornæss worm, Acta Math. 168 (1992), 1–10.10.1007/BF02392975Suche in Google Scholar

[2] Beberok, T.: Lp boundedness of the Bergman projection on some generalized Hartogs triangles, Bull. Iranian Math. Soc. 43 (2017), 2275–2280.Suche in Google Scholar

[3] Bell, S. R.—Ligocka, E.: A simplification and extension of Fefferman's theorem on biholomorphic mappings, Invent. Math. 57 (1980), 283–289.10.1007/BF01418930Suche in Google Scholar

[4] Bell, S. R.: Biholomorphic mappings and the¯-problem, Ann. of Math. 114 (1981), 103–113.10.2307/1971379Suche in Google Scholar

[5] Boas, H. P.—Straube, E. J.: Sobolev estimates for the¯-Neumann operator on domains in Cn admitting a defining function that is plurisubharmonic on the boundary, Math. Z. 206 (1991), 81–88.10.1007/BF02571327Suche in Google Scholar

[6] Boas, H. P.—Straube, E. J.: Global regularity of the¯-Neumann problem: a survey of theL2-Sobolev theory, In: Several Complex Variables (Berkeley, CA, 1995¨C1996), Math. Sci. Res. Inst. Publ., Cambridge Univ. Press, Cambridge, 1999, pp. 79–111.Suche in Google Scholar

[7] Chakrabarti, D.—Konkel, A.—Mainkar, M.—Miller, E.: Bergman kernels of elementary Reinhardt domains, Pacific J. Math. 306 (2020), 67–93.10.2140/pjm.2020.306.67Suche in Google Scholar

[8] Chakrabarti, D.—Zeytuncu, Y. E.: Lp mapping properties of the Bergman projection on the Hartogs triangle, Proc. Amer. Math. Soc. 144 (2016), 1643–1653.10.1090/proc/12820Suche in Google Scholar

[9] Chatpentier, P.—Dupain, Y.: Estimates for the Bergman and Szegö projections for pseudoconvex domains of finite type with locally diagonalizable Levi form, Publ. Mat. 50 (2006), 413–446.10.5565/PUBLMAT_50206_08Suche in Google Scholar

[10] Chatpentier, P.—Dupain, Y.—Mounkaila, M.: On estimates for weighted Bergman projections, Proc. Amer. Math. Soc. 143 (2015), 5337–5352.10.1090/proc/12660Suche in Google Scholar

[11] Chen, L.: TheLpboundedness of the Bergman projection for a class of bounded Hartogs domains, J. Math. Anal. Appl. 448 (2017), 598–610.10.1016/j.jmaa.2016.11.024Suche in Google Scholar

[12] Chen, L.: Weighted Sobolev regularity of the Bergman projection on the Hartogs triangle, Pacific J. Math. 288 (2017), 307–318.10.2140/pjm.2017.288.307Suche in Google Scholar

[13] Edholm, L. D.: Bergman theory of certain generalized Hartogs triangles, Pacific J. Math. 284 (2016), 327–342.10.2140/pjm.2016.284.327Suche in Google Scholar

[14] Edholm, L. D.—Mcneal, J. D.: The Bergman projection on fat Hartogs triangles: Lp boundedness, Proc. Amer. Math. Soc. 144 (2016), 2185–2196.10.1090/proc/12878Suche in Google Scholar

[15] Edholm, L. D.—Mcneal, J. D.: Bergman subspaces and subkernels: degenerate Lp mapping and zeroes, J. Geom. Anal. 27 (2017), 2658–2683.10.1007/s12220-017-9777-4Suche in Google Scholar

[16] Edholm, L. D.—Mcneal, J. D.: Sobolev mapping of some holomorphic projections, J. Geom. Anal. 30 (2020), 1293–1311.10.1007/s12220-019-00345-6Suche in Google Scholar

[17] Jarnicki, M.—Pflug, P.: First steps in several complex variables: Reinhardt domains, European Mathematical Society(EMS), Zürich, 2008.10.4171/049Suche in Google Scholar

[18] Krantz, S. G.: Geometric Analysis of the Bergman Kernel and Metric. Grad. Texts in Math. 268, Springer, New York, 2013.10.1007/978-1-4614-7924-6Suche in Google Scholar

[19] Mcneal, J. D.: Boundary behavior of the Bergman kernel function in2, Duke Math. J. 58 (1989), 499–512.10.1215/S0012-7094-89-05822-5Suche in Google Scholar

[20] Mcneal, J. D.: Estimates on the Bergman kernels of convex domains, Adv. Math. 109(1) (1994), 108–139.10.1006/aima.1994.1082Suche in Google Scholar

[21] Nagel, A.—Rosay, J. -P.—Stein, E. M.—Wainger, S.: Estimates for the Bergman and Szegö kernels in2, Ann. of Math. (2) 129 (1989), 113–149.10.2307/1971487Suche in Google Scholar

[22] Phong, D. H.—Stein, E. M.: Estimates for the Bergman and Szegö projections on strongly pseudo-convex domains, Duke Math. J. 44 (1977), 695–704.10.1215/S0012-7094-77-04429-5Suche in Google Scholar

[23] Zeytuncu, Y. E.: A survey of the Lp regularity of the Bergman projection, Complex Anal. Synerg. 6(2020).10.1007/s40627-020-00056-7Suche in Google Scholar

[24] Zhang, S.: Lp boundedness for the Bergman projections over n-dimensional generalized Hartogs triangles, Complex Var. Elliptic Equ. (2020); https://doi.org/10.1080/17476933.2020.1769085.Suche in Google Scholar

[25] Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Grad. Texts in Math. 226, Springer, New York, 2005.Suche in Google Scholar

Received: 2019-12-09
Accepted: 2020-10-26
Published Online: 2021-08-01
Published in Print: 2021-08-26

© 2021 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2021-0024/pdf
Button zum nach oben scrollen