Startseite Mathematik On statistical convergence of sequences of closed sets in metric spaces
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On statistical convergence of sequences of closed sets in metric spaces

  • Dimitrios Georgiou EMAIL logo , Athanasios Megaritis , Georgios Prinos und Fotini Sereti
Veröffentlicht/Copyright: 14. April 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we do further investigations on the statistical inner and outer limits of sequences of closed sets in metric spaces, which were introduced by Nuray, Rhoades, and Talo, Sever, Başar, and generalize the conventional Painleve-Kuratowski inner and outer limits. Also, we provide criteria for checking statistical Wijsman and Hausdorff set convergences and we examine the relationship between Kuratowski and Wijsman statistical convergence. A closer look on the concept of statistical Cauchyness, with respect to the Hausdorff “extended” metric h, completes this research.


The third author G. A. Prinos would like to thank the General Secretariat for Research and Technology (GSRT) and the Hellenic Foundation for Research and Innovation (HFRT) for the financial support of this research (Scholarship Code: 1582).

The fourth author F. Sereti would like to thank the General Secretariat for Research and Technology (GSRT) and the Hellenic Foundation for Research and Innovation (HFRT) for the financial support of this research (Scholarship Code: 2547).


Acknowledgement

The authors would like to thank the referee for the careful reading of the paper and the useful comments.

  1. (Communicated by Gregor Dolinar )

References

[1] Aliprantis, C. D.—Border, K.: Infinite Dimensional Analysis: A Hitchhiker’s Guide, Springer, Berlin, 2006.Suche in Google Scholar

[2] Anastassiou, G. A.—Duman, O.: Towards Intelligent Modeling: Statistical Approximation Theory, Intelligent Systems Reference Library 14, Springer-Verlag, Berlin, 2011.10.1007/978-3-642-19826-7Suche in Google Scholar

[3] Aubin, J.-P.—Frankowska, H.: Set-Valued Analysis, Modern Birkhäuser Classics, Boston, 2009.10.1007/978-0-8176-4848-0Suche in Google Scholar

[4] Baronti, M.—Papini, P. L.: Convergence of sequences of sets, Methods of functional analysis in approximation theory (Bombay, 1985), Internat. Schriftenreihe Numer. Math. 76 (1986), 135–155.Suche in Google Scholar

[5] Beer, G.: Topologies on Closed and Closed Convex Sets. Mathematics and its Applications 268, Kluwer Academic Publishers Group, Dordrecht, 1993.10.1007/978-94-015-8149-3Suche in Google Scholar

[6] Caserta, A.—Di Maio, G.—Kočinac, L. D. R.: Statistical convergence in function spaces, Abstr. Appl. Anal. 2011 (2011), Art. Id. 420419.10.1155/2011/420419Suche in Google Scholar

[7] Caserta, A.—Kočinac, L. D. R.: On statistical exhaustiveness, Appl. Math. Lett. 25(10) (2012), 1447–1451.10.1016/j.aml.2011.12.022Suche in Google Scholar

[8] Činčura, J.—Šalát, T.—Sleziak, M.—Toma, V.: Sets of statistical cluster points and 𝓘-cluster points, Real Anal. Exchange 30(2) (2004/05), 565–580.10.14321/realanalexch.30.2.0565Suche in Google Scholar

[9] Dems, K.: On 𝓙-Cauchy sequences, Real Anal. Exchange 30 (2004/2005), 123–128.10.14321/realanalexch.30.1.0123Suche in Google Scholar

[10] Di Maio, G—Kočinac, L. D. R.: Statistical convergence in topology, Topology Appl. 156(1) (2008), 28–45.10.1016/j.topol.2008.01.015Suche in Google Scholar

[11] Engelking, R.: General Topology. Sigma Series in Pure Mathematics 6, Heldermann Verlag, Berlin, 1989.Suche in Google Scholar

[12] Fast, H.: Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244 (in French).10.4064/cm-2-3-4-241-244Suche in Google Scholar

[13] Fridy, J. A.: On statistical convergence, Analysis 5(4) (1985), 301–313.10.1524/anly.1985.5.4.301Suche in Google Scholar

[14] Fridy, J. A.: Statistical limit points, Proc. Amer. Math. Soc. 118(4) (1993), 1187–1192.10.1090/S0002-9939-1993-1181163-6Suche in Google Scholar

[15] Fridy, J. A.—Orhan, C.: Statistical limit superior and limit inferior, Proc. Amer. Math. Soc. 125(12) (1997), 625–3631.10.1090/S0002-9939-97-04000-8Suche in Google Scholar

[16] Kuratowski, C.: Topologie, Vol. I. (French) Monografie Matematyczne, Tom 20, Państwowe Wydawnictwo Naukowe, Warsaw, 1958.Suche in Google Scholar

[17] Löhne, A.—Zălinescu, C.: On convergence of closed convex sets, J. Math. Anal. Appl. 319(2) (2006), 617–634.10.1016/j.jmaa.2005.06.061Suche in Google Scholar

[18] Lucchetti, R.—Torre, A.: Classical set convergences and topologies, Set-Valued Anal. 2(1–2) (1994), 219–240.10.1007/BF01027103Suche in Google Scholar

[19] Nuray, F.—Rhoades, B. E.: Statistical convergence of sequences of sets, Fasc. Math. 49 (2012), 87–99.Suche in Google Scholar

[20] Pehlivan, S.—Güncan, A.—Mamedov, M. A.: Statistical cluster points of sequences in finite dimensional spaces, Czechoslovak Math. J. 54(1) (2004), 95–102.10.1023/B:CMAJ.0000027250.19041.72Suche in Google Scholar

[21] Rockafellar, R. T.—Wets, R. J.-B.: Variational Analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 317, Springer-Verlag, Berlin, 1998.10.1007/978-3-642-02431-3Suche in Google Scholar

[22] Šalát, T.: On statistically convergent sequences of real numbers, Math. Slovaca 30(2) (1980), 139–150.Suche in Google Scholar

[23] Salinetti, G.—Wets, R. J.-B.: On the convergence of sequences of convex sets in finite dimensions, SIAM Rev. 21(1) (1979), 18–33.10.1137/1021002Suche in Google Scholar

[24] Sonntag, Y.—Zălinescu, C.: Set convergences. An attempt of classification, Trans. Amer. Math. Soc. 340(1) (1993), 199–226.10.1090/S0002-9947-1993-1173857-8Suche in Google Scholar

[25] Sonntag, Y.—Zălinescu, C.: Scalar convergence of convex sets, J. Math. Anal. Appl. 164(1) (1992), 219–241.10.1016/0022-247X(92)90154-6Suche in Google Scholar

[26] Talo, Ö.—Sever, Y.—Başar, F.: On statistically convergent sequences of closed sets, Filomat 30(6) (2016), 1497–1509.10.2298/FIL1606497TSuche in Google Scholar

[27] Tortop, ş.—Sever, Y.—Talo, Ö.: On statistically convergent sequences of closed sets and epigraphs, J. Inequal. Spec. Funct. 10(2) (2019), 10–20.Suche in Google Scholar

[28] Wijsman, R. A.: Convergence of sequences of convex sets, cones and functions, Bull. Amer. Math. Soc. 70 (1964), 186–188.10.1090/S0002-9904-1964-11072-7Suche in Google Scholar

[29] Wijsman, R. A.: Convergence of sequences of convex sets, cones and functions. II, Trans. Amer. Math. Soc. 123 (1966), 32–45.10.1090/S0002-9947-1966-0196599-8Suche in Google Scholar

Received: 2019-09-12
Accepted: 2020-07-15
Published Online: 2021-04-14
Published in Print: 2021-04-27

© 2021 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. Regular papers
  2. Prof. RNDr. Michal Fečkan, DrSc. – Sexagenarian?
  3. Tribonacci numbers with two blocks of repdigits
  4. Padovan numbers that are concatenations of two distinct repdigits
  5. On the 2-rank and 4-rank of the class group of some real pure quartic number fields
  6. A general inverse matrix series relation and associated polynomials – II
  7. Some hardy type inequalities with finsler norms
  8. Starlikeness and convexity of the product of certain multivalent functions with higher-order derivatives
  9. Block Hessenberg matrices and spectral transformations for matrix orthogonal polynomials on the unit circle
  10. How is the period of a simple pendulum growing with increasing amplitude?
  11. Fourier transforms of convolution operators on orlicz spaces
  12. Some characterizations of property of trans-Sasakian 3-manifolds
  13. P-Adic metric preserving functions and their analogues
  14. On statistical convergence of sequences of closed sets in metric spaces
  15. A characterization of the uniform convergence points set of some convergent sequence of functions
  16. A nonparametric estimation of the conditional ageing intensity function in censored data: A local linear approach
  17. Donsker’s fuzzy invariance principle under the Lindeberg condition
  18. Characterization of generalized Gamma-Lindley distribution using truncated moments of order statistics
  19. Matrix variate pareto distributions
  20. Global exponential periodicity and stability of neural network models with generalized piecewise constant delay
  21. Optimal inequalities for contact CR-submanifolds in almost contact metric manifolds
Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0477/pdf
Button zum nach oben scrollen