Abstract
We prove an analogue of the Donsker theorem under the Lindeberg condition in a fuzzy setting. Specifically, we consider a certain triangular system of d-dimensional fuzzy random variables
(Communicated by Gejza Wimmer )
References
[1] Billingsley, P.: The invariance principle for dependent random variables, Trans. Amer. Math. Soc. 83 (1956), 250–268.10.1090/S0002-9947-1956-0090923-6Search in Google Scholar
[2] Bongiorno, E. G.: A note on fuzzy set-valued Brownian motion, Statist. Probab. Lett. 82 (2012), 827–832.10.1016/j.spl.2012.01.011Search in Google Scholar
[3] Davydov, Y.—Rotar, V.: On a non-classical invariance principle, Statist. Probab. Lett. 78 (2008), 2031–2038.10.1016/j.spl.2008.01.070Search in Google Scholar
[4] Diamond, P.—Kloeden, P.: Metric spaces of fuzzy sets, Fuzzy Sets and Systems 35 (1990), 241–249.10.1016/0165-0114(90)90197-ESearch in Google Scholar
[5] Diamond, P.—Kloeden, P.: Metric Spaces of Fuzzy Sets, World Scientific, Singapore, 1994.Search in Google Scholar
[6] Diamond, P.—Kloeden, P.: Metric spaces of fuzzy sets, Fuzzy Sets and Systems 100(Suplement) (1999), 63–71.10.1016/S0165-0114(99)80007-4Search in Google Scholar
[7] Donsker, M. D.: An invariance principle for certain probability limit theorems, Mem. Amer. Math. Soc. 6 (1951), 12 pp.Search in Google Scholar
[8] Fei, W.: Existence and uniqueness for solutions to fuzzy stochastic differential equations driven by local martingales under the non-Lipschitzian condition, Nonlinear Anal. 76 (2013), 202–214.10.1016/j.na.2012.08.015Search in Google Scholar
[9] Feng, Y.: Gaussian fuzzy random variables, Fuzzy Sets and Systems 111 (2000), 325–330.10.1016/S0165-0114(98)00033-5Search in Google Scholar
[10] Fréchet, M.: Les éléments aléatoires de natures quelconque dans une space distancié, Ann. Inst. H. Poincaré 10 (1948), 215–310.Search in Google Scholar
[11] Grzegorzewski, P.: Metrics and orders in the space of fuzzy numbers, Fuzzy Sets and Systems 97 (1998), 83–94.10.1016/S0165-0114(96)00322-3Search in Google Scholar
[12] Hildebrand, W.: Core and Equilibria of a Large Economy, Princeton University Press, Princeton, 1974.Search in Google Scholar
[13] Karatzas, I.—Shreve, S. E.: Brownian Motion and Stochastic Calculus. Grad. Texts in Math. 113, Springer, 1998.10.1007/978-1-4612-0949-2Search in Google Scholar
[14] Klement, E. P.—Puri, M. L.—Ralescu, D. A.: Limit theorems for fuzzy random variables, Proc. R. Soc. London A 407 (1986), 171–182.10.1515/9783110917833.470Search in Google Scholar
[15] Körner, R.: Linear Models with Random Fuzzy Variables, Dissertation, TU Bergakademie Freiburg, 1997.Search in Google Scholar
[16] Körner, R.: On the variance of random fuzzy variables, Fuzzy Sets and Systems 92 (1997), 83–93.10.1007/978-3-7908-1800-0_2Search in Google Scholar
[17] Körner, R.—Näther, W.: Linear regression with random fuzzy variables: extended classical elements, best linear estimates, least squares estimates, Inform. Sci. 109 (1998), 95–118.10.1016/S0020-0255(98)00010-3Search in Google Scholar
[18] Krätschmer, V.: Limit theorems for fuzzy-random variables, Fuzzy Sets and Systems 126 (2002), 253–263.10.1016/S0165-0114(00)00100-7Search in Google Scholar
[19] Kwakernaak, H.: Fuzzy random variables–I. Definitions and theorems, Inform. Sci. 15 (1978), 1–29.10.1016/0020-0255(78)90019-1Search in Google Scholar
[20] Li, S.—Guan, L.: Fuzzy set-valued gaussian processes and Brownian motions, Inform. Sci. 177 (2007), 3251–3259.10.1016/j.ins.2006.11.008Search in Google Scholar
[21] Li, S.—Ogura, Y.—Nguyen, H. T.: Gaussian processes and martingales for fuzzy valued random variables with continuous parameter, Inform. Sci. 133 (2001), 7–21.10.1016/S0020-0255(01)00074-3Search in Google Scholar
[22] Lyashenko, N. N.: Statistics of random compacts in euclidean space, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 98 (1980), 115–139 (in Russian); Translation in J. Soviet Math. 21 (1983), 76–92.10.1007/BF01091458Search in Google Scholar
[23] Malinowski, M. T.—Agrawal, R. P.: On solutions to set-valued and fuzzy stochastic differential equations, J. Franklin Inst. 352 (2015), 3014–3043.10.1016/j.jfranklin.2014.11.010Search in Google Scholar
[24] Michta, M.: On set-valued stochastic integrals and fuzzy stochastic equations, Fuzzy Sets and Systems 177 (2011), 1–19.10.1016/j.fss.2011.01.007Search in Google Scholar
[25] Partasarathy, K. R.: Probability on Measures on Metric Spaces, Academic Press, New York and London, 1967.10.1016/B978-1-4832-0022-4.50006-5Search in Google Scholar
[26] Puri, M. L.—Ralescu, D. A.: The concept of normality for fuzzy random variables, Ann. Probab. 13 (1985), 1373–1379.10.1515/9783110917833.437Search in Google Scholar
[27] Puri, M. L.—Ralescu, D. A.: Fuzzy random variables, J. Math. Anal. Appl. 114 (1986), 409–422.10.1016/0022-247X(86)90093-4Search in Google Scholar
[28] Puri, M. L.—Ralescu, D. A.: Convergence theorem for fuzzy martingales, J. Math. Anal. Appl. 160 (1991), 107–122.10.1515/9783110917833.482Search in Google Scholar
[29] Revuz, D.—Yor, M.: Continuous Martingales and Brownian Motion, Spinger-Verlag, Berlin, Heidelberg, 1999.10.1007/978-3-662-06400-9Search in Google Scholar
[30] Rockafellar, R. T.: Convex Analysis. Princeton Landmarks in Mathematics, Princeton University Press, 1997.Search in Google Scholar
[31] Schneider, J.—Urban, R.: A proof of Donsker’s invariance principle based on support functions of fuzzy random vectors, Int. J. Uncertain. Fuzziness Knowl. Based Syst. 26 (2018), 27–42.10.1142/S0218488518500022Search in Google Scholar
[32] Schneider, J.—Urban, R.: Lévy subordinators in cones of fuzzy sets, J. Theoret. Probab. 32 (2019), 1909–1924.10.1007/s10959-018-0853-xSearch in Google Scholar
[33] Viertl, R.—Hareter, D.: Beschreibung und Analyse Unscharfer Information. Statistishe Methoden für Unscharfe Daten, Springer, Wien, New York, 2005.Search in Google Scholar
[34] Viertl, R.: Statistical Methods for Fuzzy Data, John Wiley & Sons, 2011.10.1002/9780470974414Search in Google Scholar
[35] Vitale, R. A.: An alternate formulation of mean value for random geometric figures, J. Microscopy 151 (1998), 197–204.10.1111/j.1365-2818.1988.tb04680.xSearch in Google Scholar
[36] Watkins, J. C.: Donsker’s invariance principle for Lie groups, Ann. Probab. 17 (1989), 1220–1242.10.1214/aop/1176991265Search in Google Scholar
[37] Wu, H. C.: The central limit theorems for fuzzy random variables, Inform. Sci. 120 (1999), 239–256.10.1016/S0020-0255(99)00063-8Search in Google Scholar
© 2021 Mathematical Institute Slovak Academy of Sciences
Articles in the same Issue
- Regular papers
- Prof. RNDr. Michal Fečkan, DrSc. – Sexagenarian?
- Tribonacci numbers with two blocks of repdigits
- Padovan numbers that are concatenations of two distinct repdigits
- On the 2-rank and 4-rank of the class group of some real pure quartic number fields
- A general inverse matrix series relation and associated polynomials – II
- Some hardy type inequalities with finsler norms
- Starlikeness and convexity of the product of certain multivalent functions with higher-order derivatives
- Block Hessenberg matrices and spectral transformations for matrix orthogonal polynomials on the unit circle
- How is the period of a simple pendulum growing with increasing amplitude?
- Fourier transforms of convolution operators on orlicz spaces
- Some characterizations of property of trans-Sasakian 3-manifolds
- P-Adic metric preserving functions and their analogues
- On statistical convergence of sequences of closed sets in metric spaces
- A characterization of the uniform convergence points set of some convergent sequence of functions
- A nonparametric estimation of the conditional ageing intensity function in censored data: A local linear approach
- Donsker’s fuzzy invariance principle under the Lindeberg condition
- Characterization of generalized Gamma-Lindley distribution using truncated moments of order statistics
- Matrix variate pareto distributions
- Global exponential periodicity and stability of neural network models with generalized piecewise constant delay
- Optimal inequalities for contact CR-submanifolds in almost contact metric manifolds
Articles in the same Issue
- Regular papers
- Prof. RNDr. Michal Fečkan, DrSc. – Sexagenarian?
- Tribonacci numbers with two blocks of repdigits
- Padovan numbers that are concatenations of two distinct repdigits
- On the 2-rank and 4-rank of the class group of some real pure quartic number fields
- A general inverse matrix series relation and associated polynomials – II
- Some hardy type inequalities with finsler norms
- Starlikeness and convexity of the product of certain multivalent functions with higher-order derivatives
- Block Hessenberg matrices and spectral transformations for matrix orthogonal polynomials on the unit circle
- How is the period of a simple pendulum growing with increasing amplitude?
- Fourier transforms of convolution operators on orlicz spaces
- Some characterizations of property of trans-Sasakian 3-manifolds
- P-Adic metric preserving functions and their analogues
- On statistical convergence of sequences of closed sets in metric spaces
- A characterization of the uniform convergence points set of some convergent sequence of functions
- A nonparametric estimation of the conditional ageing intensity function in censored data: A local linear approach
- Donsker’s fuzzy invariance principle under the Lindeberg condition
- Characterization of generalized Gamma-Lindley distribution using truncated moments of order statistics
- Matrix variate pareto distributions
- Global exponential periodicity and stability of neural network models with generalized piecewise constant delay
- Optimal inequalities for contact CR-submanifolds in almost contact metric manifolds