Home Mathematics Tribonacci numbers with two blocks of repdigits
Article
Licensed
Unlicensed Requires Authentication

Tribonacci numbers with two blocks of repdigits

  • Eric F. Bravo EMAIL logo and Jhon J. Bravo
Published/Copyright: April 14, 2021
Become an author with De Gruyter Brill

Abstract

The Tribonacci sequence is a generalization of the Fibonacci sequence which starts with 0,0,1 and each term afterwards is the sum of the three preceding terms. Here, we show that the only Tribonacci numbers that are concatenations of two repdigits are 13,24,44,81. This paper continues a previous work that searched for Fibonacci numbers which are concatenations of two repdigits.

MSC 2010: Primary 11B39; 11J86

The authors are members of the research group: Matemática Discreta y Aplicaciones: ERM (MATDIS).

J. J. B. was supported in part by Project VRI ID 5385 (Universidad del Cauca)


Acknowledgement

We thank the reviewers for their detailed comments and suggestions which significantly contributed to improving the quality of the manuscript.

  1. (Communicated by István Gaál )

References

[1] Alahmadi, A.—Altassan, A.—Luca, F.—Shoaib, H.: Fibonacci numbers which are concatenations of two repdigits, Quaest. Math. 44(2) (2021), 281–290.10.2989/16073606.2019.1686439Search in Google Scholar

[2] Baker, A.—Davenport, H.: The equations 3x2 − 2 = y2and 8x2 − 7 = z2, Q. J. Math. 20 (1969), 129–137.10.1093/qmath/20.1.129Search in Google Scholar

[3] Banks, W. D.—Luca, F.: Concatenations with binary recurrent sequences, J. Integer Seq. 8 (2005), Art. 05.1.3.Search in Google Scholar

[4] Bravo, J. J.—Gómez, C. A.—Luca, F.: Powers of two as sums of twokFibonacci numbers, Miskolc Math. Notes 17 (2016), 85–100.10.18514/MMN.2016.1505Search in Google Scholar

[5] Bravo, J. J.—Luca, F.: On a conjecture about repdigits in k–generalized Fibonacci sequences, Publ. Math. Debrecen 82 (2013), 623–639.10.5486/PMD.2013.5390Search in Google Scholar

[6] Bugeaud, Y.—Mignotte, M.—Siksek, S.: Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Ann. of Math. (2) 163 (2006), 969–1018.10.4007/annals.2006.163.969Search in Google Scholar

[7] Dujella, A.—Pethő, A.: A generalization of a theorem of Baker and Davenport, Q. J. Math. 49 (1998), 291–306.10.1093/qmathj/49.3.291Search in Google Scholar

[8] Luca, F.: Fibonacci and Lucas numbers with only one distinct digit, Port. Math. 57 (2000), 243–254.Search in Google Scholar

[9] Marques, D.: Onkgeneralized Fibonacci numbers with only one distinct digit, Util. Math. 98 (2015), 23–31.Search in Google Scholar

[10] Marques, D.—Togbé, A.: On terms of linear recurrence sequences with only one distinct block of digits, Colloq. Math. 124 (2011), 145–155.10.4064/cm124-2-1Search in Google Scholar

[11] Matveev, E. M.: An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers II, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), 1217–1269.10.1070/IM2000v064n06ABEH000314Search in Google Scholar

[12] Qu, Y.—Zeng, J.: Lucas numbers which are concatenations of two repdigits, Mathematics 8 (2020), 1–8.10.3390/math8081360Search in Google Scholar

[13] Rayaguru, S. G.—Panda, G. K.: Balancing numbers which are concatenation of two repdigits, Bol. Soc. Mat. Mex. (3) 26(3) (2020), 911–919.10.1007/s40590-020-00293-0Search in Google Scholar

[14] Sloane, N. J. et al.: The On–Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org, 2021.Search in Google Scholar

[15] Spickerman, W. R.: Binet’s formula for the Tribonacci numbers, Fibonacci Quart. 20 (1982), 118–120.Search in Google Scholar

Received: 2020-04-08
Accepted: 2020-05-20
Published Online: 2021-04-14
Published in Print: 2021-04-27

© 2021 Mathematical Institute Slovak Academy of Sciences

Articles in the same Issue

  1. Regular papers
  2. Prof. RNDr. Michal Fečkan, DrSc. – Sexagenarian?
  3. Tribonacci numbers with two blocks of repdigits
  4. Padovan numbers that are concatenations of two distinct repdigits
  5. On the 2-rank and 4-rank of the class group of some real pure quartic number fields
  6. A general inverse matrix series relation and associated polynomials – II
  7. Some hardy type inequalities with finsler norms
  8. Starlikeness and convexity of the product of certain multivalent functions with higher-order derivatives
  9. Block Hessenberg matrices and spectral transformations for matrix orthogonal polynomials on the unit circle
  10. How is the period of a simple pendulum growing with increasing amplitude?
  11. Fourier transforms of convolution operators on orlicz spaces
  12. Some characterizations of property of trans-Sasakian 3-manifolds
  13. P-Adic metric preserving functions and their analogues
  14. On statistical convergence of sequences of closed sets in metric spaces
  15. A characterization of the uniform convergence points set of some convergent sequence of functions
  16. A nonparametric estimation of the conditional ageing intensity function in censored data: A local linear approach
  17. Donsker’s fuzzy invariance principle under the Lindeberg condition
  18. Characterization of generalized Gamma-Lindley distribution using truncated moments of order statistics
  19. Matrix variate pareto distributions
  20. Global exponential periodicity and stability of neural network models with generalized piecewise constant delay
  21. Optimal inequalities for contact CR-submanifolds in almost contact metric manifolds
Downloaded on 15.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0466/html
Scroll to top button