Startseite Mathematik Homological properties of banach modules over abstract segal algebras
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Homological properties of banach modules over abstract segal algebras

  • Rasoul Nasr-Isfahani , Mehdi Nemati und Sima Soltani Renani
Veröffentlicht/Copyright: 28. Februar 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We study projectivity and injectivity for Banach modules over abstract Segal algebras. We then apply these results to abstract Segal algebras related to locally compact groups.


The First authors research was supported in part by a grant from IPM (No. 93430417).

The second authors research was supported in part by a grant from IPM (No. 93470058).



(Communicated by Werner Timmermann)


Acknowledgement

The authors would like to sincerely thank the referee of the paper for his valuable comments and suggestions. The first and second authors acknowledge that this research was partially carried out at the IPM-Isfahan Branch.

References

[1] Alaghmandan, M.—Nasr-Isfahani, R.—Nemati, M.: Character amenability and contractibility of abstract Segal algebras. Bull. Austral. Math. Soc. 82 (2010), 274–281.10.1017/S0004972710000286Suche in Google Scholar

[2] Alaghmandan, M.—Nasr-Isfahani, R.—Nemati, M.: On ϕ-contractibility of the Lebesgue-Fourier algebra of a locally compact group. Arch. Math. (Basel) 95 (2010), 373–37910.1007/s00013-010-0177-2Suche in Google Scholar

[3] Bahrami, F.—Nasr-Isfahani, R.—Soltani Renani, S.: Homological properties of certain Banach modules over group algebras. Proc. Edinburgh Math. Soc. 54 (2011), 321–328.10.1017/S0013091509000728Suche in Google Scholar

[4] Burnham, J. T.: Closed ideals in subalgebras of Banach algebras I. Proc. Amer. Math. Soc. 32 (1972), 551–555.10.1090/S0002-9939-1972-0295078-5Suche in Google Scholar

[5] Dales, H. G.:, Banach algebras and automatic continuity. London Mathematical Society Monographs 24, Clarendon Press, Oxford, 2000.Suche in Google Scholar

[6] Dales, H. G.—Polyakov, M. E.: Homological properties of modules over group algebras. Proc. Lond. Math. Soc. 63 (2004), 390–426.10.1112/S0024611504014686Suche in Google Scholar

[7] Forrest, B. E.—Samei, E.—Lee, H. H.: Projectivity of modules over Segal algebras. Houston J. Math. 39 (2013), 531–560.Suche in Google Scholar

[8] Helemskii, A. Ya.: The homology of Banach and topological algebras. Kluwer Academic Publishers Group, Dordrecht, 1989.10.1007/978-94-009-2354-6Suche in Google Scholar

[9] Hewitt, E.—Ross, K.: Abstract Harmonic Analysis II. Springer-Verlag, New York, 1970.10.1007/978-3-662-26755-4Suche in Google Scholar

[10] Johnson, B. E.: Weak amenability of group algebras, Bull. London Math. Soc., 23 (1991), 281–284.10.1112/blms/23.3.281Suche in Google Scholar

[11] Nasr-Isfahani, R.—Soltani Renani, S.: Character contractibility of Banach algebras and homological properties of Banach modules. Studia Math. 202 (2011), 205–225.10.4064/sm202-3-1Suche in Google Scholar

[12] Nasr-Isfahani, R.—Soltani Renani, S.: On homological properties for some modules of uniformly continuous functions over convolution algebras. Bull. Austral. Math. Soc. 84 (2011), 177–185.10.1017/S0004972711002024Suche in Google Scholar

[13] Ramsden, P.: Homological properties of Banach algebras. Thesis, University of Leeds, 2008.Suche in Google Scholar

[14] Reiter, H.: L1 -algebras and Segal Algebras. Lecture Notes in Math. 231, Springer, Berlin, 1971.10.1007/BFb0060759Suche in Google Scholar

[15] Reiter, H.—Stegeman, J. D.: Classical Harmonic Analysis and Locally Compact Groups. Clarendon Press, Oxford, 2000.Suche in Google Scholar

[16] Samea, H.: Approximate weak amenability of abstract Segal algebras. Math. Scand. 106 (2010), 243–249.10.7146/math.scand.a-15135Suche in Google Scholar

[17] Samea, H.: Lp-spaces on locally compact groups. Math. Slovaca 64 (2014),10.2478/s12175-014-0245-3Suche in Google Scholar

[18] Zhang, Y.: Approximate complementation and its applications in studying ideals of Banach algebras. Math. Scand. 92 (2003), 301–308.10.7146/math.scand.a-14407Suche in Google Scholar

Received: 2014-10-14
Accepted: 2015-02-19
Published Online: 2017-02-28
Published in Print: 2017-03-01

© 2017 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. State hoops
  2. On derivations of partially ordered sets
  3. Interior and closure operators on commutative basic algebras
  4. When is the cayley graph of a semigroup isomorphic to the cayley graph of a group
  5. Sequences of cantor type and their expressibility
  6. δ-Fibonacci and δ-lucas numbers, δ-fibonacci and δ-lucas polynomials
  7. Law of inertia for the factorization of cubic polynomials – the case of primes 2 and 3
  8. Closed hereditary coreflective subcategories in epireflective subcategories of Top
  9. Method of upper and lower solutions for coupled system of nonlinear fractional integro-differential equations with advanced arguments
  10. Difference of two strong Światkowski lower semicontinuous functions
  11. Fejér-type inequalities (II)
  12. Representation of maxitive measures: An overview
  13. On a conjecture of Y. H. Cao and X. B. Zhang
  14. On the generalized orthogonal stability of the pexiderized quadratic functional equations in modular spaces
  15. Almost everywhere convergence of some subsequences of Fejér means for integrable functions on some unbounded Vilenkin groups
  16. Homological properties of banach modules over abstract segal algebras
  17. Variable Hajłasz-Sobolev spaces on compact metric spaces
  18. Commuting pairs of self-adjoint elements in C*-algebras
  19. Additivity of maps preserving products AP ± PA* on C*-algebras
  20. A note on derived connections from semi-symmetric metric connections
  21. Lindelöf P-spaces need not be Sokolov
  22. Strong convergence properties for arrays of rowwise negatively orthant dependent random variables
  23. Least absolute deviations problem for the Michaelis-Menten function
  24. Congruence pairs of principal p-algebras
Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2016-0257/html
Button zum nach oben scrollen