Home Mathematics Additivity of maps preserving products AP ± PA* on C*-algebras
Article
Licensed
Unlicensed Requires Authentication

Additivity of maps preserving products AP ± PA* on C*-algebras

  • Ali Taghavi , Vahid Darvish and Hamid Rohi
Published/Copyright: February 28, 2017
Become an author with De Gruyter Brill

Abstract

Let 𝒜 and ℬ be two prime C*-algebras. In this paper, we investigate the additivity of map Φ from 𝒜 onto ℬ that are bijective unital and satisfies

Φ(AP+λPA)=Φ(A)Φ(P)+λΦ(P)Φ(A),

for all A ∊ 𝒜 and P ∊ {P1, I𝒜P1} where P1 is a nontrivial projection in 𝒜 and λ∊ {−1, +1}. Then, Φ is *-additive.

MSC 2010: 47B48; 46L10

(Communicated by Emanuel Chetcuti)


Acknowledgement

The authors are grateful to the reviewer for careful reading and valuable suggestions which improved the quality of the paper.

References

[1] Bai, Z. F.—Du, S. P.: Multiplicative Lie isomorphism between prime rings, Comm. Algebra 36 (2008), 1626–1633.10.1080/00927870701870475Search in Google Scholar

[2] Bai, Z. F.—Du, S. P.: Multiplicative *-Lie isomorphism between factors, J. Math. Anal. Appl. 346 (2008), 327–335.10.1016/j.jmaa.2008.05.077Search in Google Scholar

[3] Beidar, K. I.—Brešar, M.—Chebotar, M. A.—Martindale, W. S.: On Hersteins Lie map conjecture (I), Trans. Amer. Math. Soc. 353 (2001), 4235–4260.10.1090/S0002-9947-01-02731-3Search in Google Scholar

[4] Beidar, K. I.—Brešar, M.—Chebotar, M. A.—Martindale, W. S.: On Hersteins Lie map conjecture (II), J. Algebra 238 (2001), 239–264.10.1006/jabr.2000.8628Search in Google Scholar

[5] Beidar, K. I.—Brešar, M.—Chebotar, M. A.—Martindale, W. S.: On Hersteins Lie map conjecture (III), J. Algebra 238 (2002), 59–94.10.1006/jabr.2001.9076Search in Google Scholar

[6] Brešar, M.: Jordan mappings of semiprime rings, J. Algebra 127 (1989), 218–228.10.1016/0021-8693(89)90285-8Search in Google Scholar

[7] Brešar, M.—Foner, A.: On ring with involution equipped with some new product, Publ. Math. Debrecen 57 (2000), 121–134.10.5486/PMD.2000.2247Search in Google Scholar

[8] Cui, J.—Li, C. K.: Maps preserving product XY – Y X* on factor von Neumann algebras, Linear Algebra Appl. 431 (2009), 833–842.10.1016/j.laa.2009.03.036Search in Google Scholar

[9] Hakeda, J.: Additivity of Jordan *-maps on AW*-algebras, Proc. Amer. Math. Soc. 96 (1986), 413–420.10.2307/2046586Search in Google Scholar

[10] Herstein, I. N.: Jordan homomorphisms, Trans. Amer. Math. Soc. 81 (1956), 331–341.10.1090/S0002-9947-1956-0076751-6Search in Google Scholar

[11] Jacobson, N.—Rickart, C. E.: Jordan homomorphism of rings, Trans. Amer. Math. Soc. 69 (1950), 479–502.10.1007/978-1-4612-3694-8_7Search in Google Scholar

[12] Ji, P.—Liu, Z.: Additivity of Jordan maps on standard Jordan operator algebras, Linear Algebra Appl. 430 (2009), 335–343.10.1016/j.laa.2008.07.023Search in Google Scholar

[13] Kadison, R. V.: Isometries of operator algebras, Ann. of Math. 54 (1951), 325–338.10.2307/1969534Search in Google Scholar

[14] Li, C.—Lu, F.—Fang, X.: Nonlinear mappings preserving product XY + YX* on factor von Neumann algebras, Linear Algebra Appl. 438 (2013), 2339–2345.10.1016/j.laa.2012.10.015Search in Google Scholar

[15] Lu, F.: Additivity of Jordan maps on standard operator algebras, Linear Algebra Appl. 357 (2002), 123–131.10.1016/S0024-3795(02)00367-1Search in Google Scholar

[16] Lu, F.: Jordan maps on associative algebras, Comm. Algebra 31 (2003), 2273–2286.10.1081/AGB-120018997Search in Google Scholar

[17] Lu, F.: Jordan triple maps, Linear Algebra Appl. 375 (2003), 311–317.10.1016/j.laa.2003.06.004Search in Google Scholar

[18] Marcoux, L. W.: Lie isomorphism of nest algebras, J. Funct. Anal. 164 (1999), 163–180.10.1006/jfan.1999.3388Search in Google Scholar

[19] Molnár, L.: A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), 229–234.10.1016/0024-3795(94)00143-XSearch in Google Scholar

[20] Molnár, L.: On isomorphisms of standard operator algebras, Studia Math. 142 (2000), 295–302.10.4064/sm-142-3-295-302Search in Google Scholar

[21] Martindale, W. S.: When are multiplicative mappings additive? Proc. Amer. Math. Soc. 21 (1969), 695–698.10.1090/S0002-9939-1969-0240129-7Search in Google Scholar

[22] Mires, C. R.: Lie isomorphisms of operator algebras, Pacific J. Math. 38 (1971), 717–735.10.2140/pjm.1971.38.717Search in Google Scholar

[23] Mires, C. R.: Lie isomorphisms of factors, Trans. Amer. Math. Soc. 147 (1970), 5–63.10.1090/S0002-9947-1970-0273423-7Search in Google Scholar

[24] Qi, X.—Hou, J.: Additivity of Lie multiplicative maps on triangular algebras, Linear and Multilinear Algebra 59 (2011), 391–397.10.1080/03081080903582094Search in Google Scholar

[25] Šemrl, P.: Quadratic functionals and Jordan *-derivations, Studia Math. 97 (1991), 157–165.10.4064/sm-97-3-157-165Search in Google Scholar

Received: 2014-06-07
Accepted: 2014-10-28
Published Online: 2017-02-28
Published in Print: 2017-03-01

© 2017 Mathematical Institute Slovak Academy of Sciences

Articles in the same Issue

  1. State hoops
  2. On derivations of partially ordered sets
  3. Interior and closure operators on commutative basic algebras
  4. When is the cayley graph of a semigroup isomorphic to the cayley graph of a group
  5. Sequences of cantor type and their expressibility
  6. δ-Fibonacci and δ-lucas numbers, δ-fibonacci and δ-lucas polynomials
  7. Law of inertia for the factorization of cubic polynomials – the case of primes 2 and 3
  8. Closed hereditary coreflective subcategories in epireflective subcategories of Top
  9. Method of upper and lower solutions for coupled system of nonlinear fractional integro-differential equations with advanced arguments
  10. Difference of two strong Światkowski lower semicontinuous functions
  11. Fejér-type inequalities (II)
  12. Representation of maxitive measures: An overview
  13. On a conjecture of Y. H. Cao and X. B. Zhang
  14. On the generalized orthogonal stability of the pexiderized quadratic functional equations in modular spaces
  15. Almost everywhere convergence of some subsequences of Fejér means for integrable functions on some unbounded Vilenkin groups
  16. Homological properties of banach modules over abstract segal algebras
  17. Variable Hajłasz-Sobolev spaces on compact metric spaces
  18. Commuting pairs of self-adjoint elements in C*-algebras
  19. Additivity of maps preserving products AP ± PA* on C*-algebras
  20. A note on derived connections from semi-symmetric metric connections
  21. Lindelöf P-spaces need not be Sokolov
  22. Strong convergence properties for arrays of rowwise negatively orthant dependent random variables
  23. Least absolute deviations problem for the Michaelis-Menten function
  24. Congruence pairs of principal p-algebras
Downloaded on 15.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2016-0260/html
Scroll to top button