Startseite Mathematik Additivity of maps preserving products AP ± PA* on C*-algebras
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Additivity of maps preserving products AP ± PA* on C*-algebras

  • Ali Taghavi , Vahid Darvish und Hamid Rohi
Veröffentlicht/Copyright: 28. Februar 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Let 𝒜 and ℬ be two prime C*-algebras. In this paper, we investigate the additivity of map Φ from 𝒜 onto ℬ that are bijective unital and satisfies

Φ(AP+λPA)=Φ(A)Φ(P)+λΦ(P)Φ(A),

for all A ∊ 𝒜 and P ∊ {P1, I𝒜P1} where P1 is a nontrivial projection in 𝒜 and λ∊ {−1, +1}. Then, Φ is *-additive.

MSC 2010: 47B48; 46L10

(Communicated by Emanuel Chetcuti)


Acknowledgement

The authors are grateful to the reviewer for careful reading and valuable suggestions which improved the quality of the paper.

References

[1] Bai, Z. F.—Du, S. P.: Multiplicative Lie isomorphism between prime rings, Comm. Algebra 36 (2008), 1626–1633.10.1080/00927870701870475Suche in Google Scholar

[2] Bai, Z. F.—Du, S. P.: Multiplicative *-Lie isomorphism between factors, J. Math. Anal. Appl. 346 (2008), 327–335.10.1016/j.jmaa.2008.05.077Suche in Google Scholar

[3] Beidar, K. I.—Brešar, M.—Chebotar, M. A.—Martindale, W. S.: On Hersteins Lie map conjecture (I), Trans. Amer. Math. Soc. 353 (2001), 4235–4260.10.1090/S0002-9947-01-02731-3Suche in Google Scholar

[4] Beidar, K. I.—Brešar, M.—Chebotar, M. A.—Martindale, W. S.: On Hersteins Lie map conjecture (II), J. Algebra 238 (2001), 239–264.10.1006/jabr.2000.8628Suche in Google Scholar

[5] Beidar, K. I.—Brešar, M.—Chebotar, M. A.—Martindale, W. S.: On Hersteins Lie map conjecture (III), J. Algebra 238 (2002), 59–94.10.1006/jabr.2001.9076Suche in Google Scholar

[6] Brešar, M.: Jordan mappings of semiprime rings, J. Algebra 127 (1989), 218–228.10.1016/0021-8693(89)90285-8Suche in Google Scholar

[7] Brešar, M.—Foner, A.: On ring with involution equipped with some new product, Publ. Math. Debrecen 57 (2000), 121–134.10.5486/PMD.2000.2247Suche in Google Scholar

[8] Cui, J.—Li, C. K.: Maps preserving product XY – Y X* on factor von Neumann algebras, Linear Algebra Appl. 431 (2009), 833–842.10.1016/j.laa.2009.03.036Suche in Google Scholar

[9] Hakeda, J.: Additivity of Jordan *-maps on AW*-algebras, Proc. Amer. Math. Soc. 96 (1986), 413–420.10.2307/2046586Suche in Google Scholar

[10] Herstein, I. N.: Jordan homomorphisms, Trans. Amer. Math. Soc. 81 (1956), 331–341.10.1090/S0002-9947-1956-0076751-6Suche in Google Scholar

[11] Jacobson, N.—Rickart, C. E.: Jordan homomorphism of rings, Trans. Amer. Math. Soc. 69 (1950), 479–502.10.1007/978-1-4612-3694-8_7Suche in Google Scholar

[12] Ji, P.—Liu, Z.: Additivity of Jordan maps on standard Jordan operator algebras, Linear Algebra Appl. 430 (2009), 335–343.10.1016/j.laa.2008.07.023Suche in Google Scholar

[13] Kadison, R. V.: Isometries of operator algebras, Ann. of Math. 54 (1951), 325–338.10.2307/1969534Suche in Google Scholar

[14] Li, C.—Lu, F.—Fang, X.: Nonlinear mappings preserving product XY + YX* on factor von Neumann algebras, Linear Algebra Appl. 438 (2013), 2339–2345.10.1016/j.laa.2012.10.015Suche in Google Scholar

[15] Lu, F.: Additivity of Jordan maps on standard operator algebras, Linear Algebra Appl. 357 (2002), 123–131.10.1016/S0024-3795(02)00367-1Suche in Google Scholar

[16] Lu, F.: Jordan maps on associative algebras, Comm. Algebra 31 (2003), 2273–2286.10.1081/AGB-120018997Suche in Google Scholar

[17] Lu, F.: Jordan triple maps, Linear Algebra Appl. 375 (2003), 311–317.10.1016/j.laa.2003.06.004Suche in Google Scholar

[18] Marcoux, L. W.: Lie isomorphism of nest algebras, J. Funct. Anal. 164 (1999), 163–180.10.1006/jfan.1999.3388Suche in Google Scholar

[19] Molnár, L.: A condition for a subspace of B(H) to be an ideal, Linear Algebra Appl. 235 (1996), 229–234.10.1016/0024-3795(94)00143-XSuche in Google Scholar

[20] Molnár, L.: On isomorphisms of standard operator algebras, Studia Math. 142 (2000), 295–302.10.4064/sm-142-3-295-302Suche in Google Scholar

[21] Martindale, W. S.: When are multiplicative mappings additive? Proc. Amer. Math. Soc. 21 (1969), 695–698.10.1090/S0002-9939-1969-0240129-7Suche in Google Scholar

[22] Mires, C. R.: Lie isomorphisms of operator algebras, Pacific J. Math. 38 (1971), 717–735.10.2140/pjm.1971.38.717Suche in Google Scholar

[23] Mires, C. R.: Lie isomorphisms of factors, Trans. Amer. Math. Soc. 147 (1970), 5–63.10.1090/S0002-9947-1970-0273423-7Suche in Google Scholar

[24] Qi, X.—Hou, J.: Additivity of Lie multiplicative maps on triangular algebras, Linear and Multilinear Algebra 59 (2011), 391–397.10.1080/03081080903582094Suche in Google Scholar

[25] Šemrl, P.: Quadratic functionals and Jordan *-derivations, Studia Math. 97 (1991), 157–165.10.4064/sm-97-3-157-165Suche in Google Scholar

Received: 2014-06-07
Accepted: 2014-10-28
Published Online: 2017-02-28
Published in Print: 2017-03-01

© 2017 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. State hoops
  2. On derivations of partially ordered sets
  3. Interior and closure operators on commutative basic algebras
  4. When is the cayley graph of a semigroup isomorphic to the cayley graph of a group
  5. Sequences of cantor type and their expressibility
  6. δ-Fibonacci and δ-lucas numbers, δ-fibonacci and δ-lucas polynomials
  7. Law of inertia for the factorization of cubic polynomials – the case of primes 2 and 3
  8. Closed hereditary coreflective subcategories in epireflective subcategories of Top
  9. Method of upper and lower solutions for coupled system of nonlinear fractional integro-differential equations with advanced arguments
  10. Difference of two strong Światkowski lower semicontinuous functions
  11. Fejér-type inequalities (II)
  12. Representation of maxitive measures: An overview
  13. On a conjecture of Y. H. Cao and X. B. Zhang
  14. On the generalized orthogonal stability of the pexiderized quadratic functional equations in modular spaces
  15. Almost everywhere convergence of some subsequences of Fejér means for integrable functions on some unbounded Vilenkin groups
  16. Homological properties of banach modules over abstract segal algebras
  17. Variable Hajłasz-Sobolev spaces on compact metric spaces
  18. Commuting pairs of self-adjoint elements in C*-algebras
  19. Additivity of maps preserving products AP ± PA* on C*-algebras
  20. A note on derived connections from semi-symmetric metric connections
  21. Lindelöf P-spaces need not be Sokolov
  22. Strong convergence properties for arrays of rowwise negatively orthant dependent random variables
  23. Least absolute deviations problem for the Michaelis-Menten function
  24. Congruence pairs of principal p-algebras
Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2016-0260/html
Button zum nach oben scrollen