Startseite δ-Fibonacci and δ-lucas numbers, δ-fibonacci and δ-lucas polynomials
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

δ-Fibonacci and δ-lucas numbers, δ-fibonacci and δ-lucas polynomials

  • Roman Wituła , Edyta Hetmaniok , Damian Słota und Mariusz Pleszczyński
Veröffentlicht/Copyright: 28. Februar 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, with reference to the previous work [WITUŁA, R.—SŁOTA, D.: δ-Fibonacci numbers, Appl. Anal. Discrete Math. 3 (2009), 310–329] concerning the, so called, δ-Fibonacci numbers, the concepts of δ-Lucas numbers, δ-Fibonacci and δ-Lucas polynomials are introduced. There are discussed the basic properties of such objects, as well as their applications, especially for description of certain polynomials and identities of algebraic and trigonometric type. Many from among these identities describe the binomial transformations of the respective integer sequences and polynomials. Similarly as for δ-Fibonacci numbers, also for δ-Lucas numbers some attractive identities–bridges are obtained, connecting these numbers in practice with every sequence of integer numbers.

MSC 2010: Primary 11B39; 11B83

(Communicated by Stanislav Jakubec)


References

[1] Benjamin, A.T.—Quinn, J.J.: Proofs that Really Count: The Art of Combinatorial Proof, Mathematical Association of America, Washington, D.C., 2003.10.5948/9781614442080Suche in Google Scholar

[2] Grimaldi, R.: Tilings, compositions, and generalizations, J. Integer Seq. 13 (2010), Article 10.6.5.Suche in Google Scholar

[3] Koshy, T.: Fibonacci and Lucas Numbers with Application. Wiley, New York, 2001.10.1002/9781118033067Suche in Google Scholar

[4] Ribenboim, P.: Fermat’s Last Theorem for Amateurs. Springer Verlag, New York, 1999.Suche in Google Scholar

[5] Seibert, J.—Trojovský, P.: Circulants and the factorization of the Fibonacci-like numbers, Acta Math. Univ. Ostrav. 14 (2006), 63–70.Suche in Google Scholar

[6] Seibert, J.—Trojovský, P.: On factorization of the Fibonacci and Lucas numbers using tridiagonal determinants, Math. Slovaca 62 (2012), 439–450.10.2478/s12175-012-0020-2Suche in Google Scholar

[7] Wituła, R.: Binomials transformation formulae of scaled Lucas numbers, Demonstratio Math. 46 (2013), 15–27.10.1515/dema-2013-0436Suche in Google Scholar

[8] Wituła, R.—Słota, D.: Quasi-Fibonacci numbers of order 13 on the occasion the Thirteenth International Conference on Fibonacci numbers and their applications, Congr. Numer. 201 (2010), 89–107.Suche in Google Scholar

[9] Wituła, R.—Słota, D.: Cauchy, Ferrers-Jackson and Chebyshev polynomials and identities for the powers of elements of some conjugate recurrence sequence, Cent. Eur. J. Math. 4 (2006), 531–546.10.2478/s11533-006-0022-9Suche in Google Scholar

[10] Wituła, R.—Słota, D.—Warzyński, A.: Quasi-Fibonacci numbers of seventh order, J. Integer Seq. 9 (2006), Article 06.4.3.Suche in Google Scholar

[11] Wituła, R.—Słota, D.: Quasi-Fibonacci numbers of order 11., J. Integer Seq. 10 (2007), Article 07.8.5.Suche in Google Scholar

[12] Wituła, R.—Słota, D.: New Ramanujan-type formulas and Quasi-Fibonacci numbers of order 7., J. Integer Seq. 10 (2007), Article 07.5.6.Suche in Google Scholar

[13] Wituła, R.—Słota, D.: Conjugate sequences in a Fibonacci-Lucas sense and some identities for sums of powers of their elements, Integers 7 (2007), #A08 1–26.Suche in Google Scholar

[14] Wituła, R.—Słota, D.: δ-Fibonacci numbers, Appl. Anal. Discrete Math. 3 (2009), 310–329.10.2298/AADM0902310WSuche in Google Scholar

[15] Wituła, R.: δ-Fibonacci numbers. Part II, Novi Sad J. Math. 42 (2013), 9–22.Suche in Google Scholar

[16] Wituła, R.—Słota, D.—Hetmaniok, E.: Bridges beetwen different known integer sequences, Ann. Math. Inform. 41 (2013), 255–263.Suche in Google Scholar

[17] Hetmaniok, E.—Piątek, B.—Wituła, R.: Binomial transformation formulae for scaled Fibonacci numbers, Demonstratio Math. (in press).10.1515/math-2017-0047Suche in Google Scholar

Received: 2013-03-27
Accepted: 2015-05-14
Published Online: 2017-02-28
Published in Print: 2017-03-01

© 2017 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. State hoops
  2. On derivations of partially ordered sets
  3. Interior and closure operators on commutative basic algebras
  4. When is the cayley graph of a semigroup isomorphic to the cayley graph of a group
  5. Sequences of cantor type and their expressibility
  6. δ-Fibonacci and δ-lucas numbers, δ-fibonacci and δ-lucas polynomials
  7. Law of inertia for the factorization of cubic polynomials – the case of primes 2 and 3
  8. Closed hereditary coreflective subcategories in epireflective subcategories of Top
  9. Method of upper and lower solutions for coupled system of nonlinear fractional integro-differential equations with advanced arguments
  10. Difference of two strong Światkowski lower semicontinuous functions
  11. Fejér-type inequalities (II)
  12. Representation of maxitive measures: An overview
  13. On a conjecture of Y. H. Cao and X. B. Zhang
  14. On the generalized orthogonal stability of the pexiderized quadratic functional equations in modular spaces
  15. Almost everywhere convergence of some subsequences of Fejér means for integrable functions on some unbounded Vilenkin groups
  16. Homological properties of banach modules over abstract segal algebras
  17. Variable Hajłasz-Sobolev spaces on compact metric spaces
  18. Commuting pairs of self-adjoint elements in C*-algebras
  19. Additivity of maps preserving products AP ± PA* on C*-algebras
  20. A note on derived connections from semi-symmetric metric connections
  21. Lindelöf P-spaces need not be Sokolov
  22. Strong convergence properties for arrays of rowwise negatively orthant dependent random variables
  23. Least absolute deviations problem for the Michaelis-Menten function
  24. Congruence pairs of principal p-algebras
Heruntergeladen am 11.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2016-0247/html
Button zum nach oben scrollen