Startseite Numerical scheme and analytical solutions to the stochastic nonlinear advection diffusion dynamical model
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Numerical scheme and analytical solutions to the stochastic nonlinear advection diffusion dynamical model

  • Muhammad W. Yasin , Muhammad S. Iqbal , Aly R. Seadawy ORCID logo EMAIL logo , Muhammad Z. Baber , Muhammad Younis und Syed T. R. Rizvi
Veröffentlicht/Copyright: 7. Dezember 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, we give the numerical scheme to the stochastic nonlinear advection diffusion equation. This models is considered with white noise (or random process) having same intensity by changing frequencies. Furthermore, the stability and consistency of proposed scheme are also discussed. Moreover, it is concerned about the analytical solutions, the Riccati equation mapping method is adopted. The different families of single (shock and singular) and mixed (complex solitary-shock, shock-singular, and double-singular) form solutions are obtained with the different choices of free parameters. The graphical behavior of solutions is also depicted in 3D and corresponding contours.


Corresponding author: Aly R. Seadawy, Mathematics Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia, E-mail: aly742001@gmail.com

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] C.-Q. Dai and Y.-Y. Wang, “Coupled spatial periodic waves and solitons in the photovoltaic photorefractive crystals,” Nonlinear Dynam., vol. 102, pp. 1733–1741, 2020. https://doi.org/10.1007/s11071-020-05985-w.Suche in Google Scholar

[2] C.-Q. Dai, Y.-Y. Wang, and J.-F. Zhang, “Managements of scalar and vector rogue waves in a partially nonlocal nonlinear medium with linear and harmonic potentials,” Nonlinear Dynam., vol. 102, pp. 379–391, 2020. https://doi.org/10.1007/s11071-020-05949-0.Suche in Google Scholar

[3] P. Li, R. Li, and C. Dai, “Existence, symmetry breaking bifurcation and stability of two-dimensional optical solitons supported by fractional diffraction,” Opt. Express, vol. 29, pp. 3193–3209, 2021. https://doi.org/10.1364/oe.415028.Suche in Google Scholar PubMed

[4] B.-H. Wangx, Y.-Y. Wang, C.-Q. Dai, and Y.-X. Chen, “Dynamical characteristic of analytical fractional solitons for the space-time fractional Fokas–Lenells equation,” Alex. Eng. J., vol. 59, pp. 4699–4707, 2020. https://doi.org/10.1016/j.aej.2020.08.027.Suche in Google Scholar

[5] N. A. Kudryashov, “Seven common errors in finding exact solutions of nonlinear differential equations,” Commun. Nonlinear Sci. Numer. Simulat., vol. 14, pp. 3507–3529, 2009. https://doi.org/10.1016/j.cnsns.2009.01.023.Suche in Google Scholar

[6] M. Inc, A. Yusuf, A. Isa Aliyu, and D. Baleanu, Soliton structures to some time-fractional nonlinear differential equations with conformable derivative, Opt. Quant. Electron., vol. 50, 2018, Art no. 20. https://doi.org/10.1007/s11082-017-1287-x.Suche in Google Scholar

[7] M. M. Al Qurashi, D. Baleanu, and M. Inc, “Optical solitons of transmission equation of ultra-short optical pulse in parabolic law media with the aid of Backlund transformation,” Optik, vol. 140, pp. 114–122, 2017. https://doi.org/10.1016/j.ijleo.2017.03.109.Suche in Google Scholar

[8] M. M. Al Qurashi, Z. S. Korpinar, and M. Inc, “Approximate solutions of bright and dark optical solitons in birefrigent fibers,” Optik, vol. 140, pp. 45–61, 2017. https://doi.org/10.1016/j.ijleo.2017.04.020.Suche in Google Scholar

[9] M. Inc, A. Isa Aliyu, and A. Yusuf, “Solitons and conservation laws to the resonance nonlinear Shrödinger’s equation with both spatio-temporal and inter-modal dispersions,” Optik, vol. 142, pp. 509–522, 2017. https://doi.org/10.1016/j.ijleo.2017.06.010.Suche in Google Scholar

[10] B. H. Wang and Y. Y. Wang, “Fractional white noise functional soliton solutions of a wick-type stochastic fractional NLSE,” Appl. Math. Lett., vol. 110, p. 106583, 2020. https://doi.org/10.1016/j.aml.2020.106583.Suche in Google Scholar

[11] M. Wadati, “Deformation of solitons in random media,” in Nonlinearity with Disorder, Berlin, Heidelberg, Springer, 1992, pp. 23–29.10.1007/978-3-642-84774-5_3Suche in Google Scholar

[12] M. Kamrani and S. M. Hosseini, “The role of coefficients of a general SPDE on the stability and convergence of a finite difference method,” J. Comput. Appl. Math., vol. 234, no. 5, pp. 1426–1434, 2010. https://doi.org/10.1016/j.cam.2010.02.018.Suche in Google Scholar

[13] M. Inc, A. Isa Aliyu, and A. Yusuf, “Dark optical, singular solitons and conservation laws to the nonlinear Schrödinger’s equation with spatio-temporal dispersion,” Mod. Phys. Lett. B, vol. 31, p. 1750163, 2017. https://doi.org/10.1142/s0217984917501639.Suche in Google Scholar

[14] M. M. Al Qurashi, E. Ates, and M. Inc, “Optical solitons in multiple-core couplers with the nearest neighbors linear coupling,” Optik, vol. 142, pp. 343–353, 2017. https://doi.org/10.1016/j.ijleo.2017.06.002.Suche in Google Scholar

[15] M. Inc, I. E. Inan, and Y. Ugurlu, “New applications of the functional variable method,” Optik, vol. 136, pp. 374–381, 2017. https://doi.org/10.1016/j.ijleo.2017.02.058.Suche in Google Scholar

[16] A. R. Seadawy, M. Iqbal, and D. Lu, “Application of mathematical methods on the ion sound and Langmuir waves dynamical systems,” Pramana-J. Phys., vol. 93, 2019, Art no. 10. https://doi.org/10.1007/s12043-019-1771-x.Suche in Google Scholar

[17] A. Ali, A. R. Seadawy, and D. Lu, “New solitary wave solutions of some nonlinear models and their applications,” Adv. Differ. Equ., vol. 2018, no. 232, pp. 1–12, 2018. https://doi.org/10.1186/s13662-018-1687-7.Suche in Google Scholar

[18] M. Arshad, A. Seadawy, and D. Lu, “Bright-dark solitary wave solutions of generalized higher-order nonlinear Schrodinger equation and its applications in optics,” J. Electromagn. Waves Appl., vol. 31, no. 16, pp. 1711–1721, 2017. https://doi.org/10.1080/09205071.2017.1362361.Suche in Google Scholar

[19] I. Ahmed, A. R. Seadawy, and D. Lu, “M-shaped rational solitons and their interaction with kink waves in the Fokas-lenells equation,” Phys. Scripta, vol. 94, p. 055205, 2019. https://doi.org/10.1088/1402-4896/ab0455.Suche in Google Scholar

[20] A. Seadawy, D. Kumar, K. Hosseini, and F. Samadani, “The system of equations for the ion sound and Langmuir waves and its new exact solutions,” Results Phys., vol. 9, pp. 1631–1634, 2018. https://doi.org/10.1016/j.rinp.2018.04.064.Suche in Google Scholar

[21] N. Cheemaa, A. R. Seadawy, and S. Chen, “More general families of exact solitary wave solutions of the nonlinear Schrodinger equation with their applications in nonlinear optics,” Eur. Phys. J. Plus, vol. 133, p. 547, 2018. https://doi.org/10.1140/epjp/i2018-12354-9.Suche in Google Scholar

[22] N. Cheemaa, A. R. Seadawy, and S. Chen, “Some new families of solitary wave solutions of generalized Schamel equation and their applications in plasma physics,” Eur. Phys. J. Plus, vol. 134, p. 117, 2019. https://doi.org/10.1140/epjp/i2019-12467-7.Suche in Google Scholar

[23] N. Bellomo, Z. Brzezniak, and L. M. De Socio, Nonlinear Stochastic Evolution Problems in Applied Sciences, vol. 82, Springer Science & Business Media, 2012.Suche in Google Scholar

[24] N. Bellomo and F. Flandoli, “Stochastic partial differential equations in continuum physics – on the foundations of the stochastic interpolation method for ITO’s type equations,” Math. Comput. Simulat., vol. 31, nos. 1-2, pp. 3–17, 1989. https://doi.org/10.1016/0378-4754(89)90049-9.Suche in Google Scholar

[25] A. Brace, D. G atarek, and M. Musiela, “The market model of interest rate dynamics,” Math. Finance, vol. 7, no. 2, pp. 127–155, 1997. https://doi.org/10.1111/1467-9965.00028.Suche in Google Scholar

[26] M. Musiela and D. Sondermann, Different Dynamical Specifications of the Term Structure of Interest Rates and Their Implications, Rheinische Friedrich-Wilhelms-Universität Bonn, 1993.Suche in Google Scholar

[27] C. Roth, “Difference methods for stochastic partial differential equations,” ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik: Appl. Math. Mech., vol. 82, nos. 11–12, pp. 821–830, 2002.10.1002/1521-4001(200211)82:11/12<821::AID-ZAMM821>3.0.CO;2-LSuche in Google Scholar

[28] M. Namjoo and A. Mohebbian, “Approximation of stochastic advection diffusion equations with finite difference scheme,” J. Math. Model., vol. 4, no. 1, pp. 1–18, 2016.Suche in Google Scholar

[29] A. R. Soheili, M. B. Niasar, and M. Arezoomandan, “Approximation of stochastic parabolic differential equations with two different finite difference schemes,” Appl. Math., vol. 58, no. 4, pp. 439–471, 2013.10.1007/s10492-013-0022-6Suche in Google Scholar

[30] Y. Xie, “Exact solutions for stochastic KdV equations,” Phys. Lett. A, vol. 310, nos. 2–3, pp. 161–167, 2003. https://doi.org/10.1016/s0375-9601(03)00265-2.Suche in Google Scholar

[31] M. Younis, T. A. Sulaiman, M. Bilal, S. U. Rehman, and U. Younas, “Modulation instability analysis, optical and other solutions to the modified nonlinear Schrödinger equation,” Commun. Theor. Phys., vol. 72, no. 6, p. 065001, 2020. https://doi.org/10.1088/1572-9494/ab7ec8.Suche in Google Scholar

[32] M. Younis, N. Cheemaa, S. A. Mehmood, S. T. R. Rizvi, and A. Bekir, “A variety of exact solutions to (2 + 1)-dimensional Schrödinger equation,” Waves Random Complex Media, vol. 30, no. 3, pp. 490–499, 2020. https://doi.org/10.1080/17455030.2018.1532131.Suche in Google Scholar

[33] S. D. Zhu, “The generalizing Riccati equation mapping method in non-linear evolution equation: application to (2 + 1)-dimensional Boiti–Leon–Pempinelle equation,” Chaos, Solit. Fractals, vol. 37, no. 5, pp. 1335–1342, 2008. https://doi.org/10.1016/j.chaos.2006.10.015.Suche in Google Scholar

[34] H. Naher and F. A. Abdullah, “The modified Benjamin–Bona–Mahony equation via the extended generalized Riccati equation mapping method,” Appl. Math. Sci., vol. 6, no. 111, pp. 5495–5512, 2012.Suche in Google Scholar

[35] S. Abbasbandy, “Homotopy perturbation method for quadratic Riccati differential equation and comparison with Adomian’s decomposition method,” Appl. Math. Comput., vol. 172, no. 1, pp. 485–490, 2006. https://doi.org/10.1016/j.amc.2005.02.014.Suche in Google Scholar

[36] S. S. Siddiqi and S. Arshed, “Quintic B-spline for the numerical solution of the good Boussinesq equation,” Journal of the Egyptian Mathematical Society, vol. 22, no. 2, pp. 209–213, 2014. https://doi.org/10.1016/j.joems.2013.06.015.Suche in Google Scholar

[37] M. Seydaoglu, “An accurate approximation algorithm for Burgers’ equation in the presence of small viscosity,” J. Comput. Appl. Math., vol. 344, pp. 473–481, 2018.10.1016/j.cam.2018.05.063Suche in Google Scholar

[38] A. Singh, S. Das, S. H. Ong, and H. Jafari, “Numerical solution of nonlinear reaction–advection–diffusion equation,” J. Comput. Nonlinear Dynam., vol. 14, no. 4, pp. 328–337, 2019. https://doi.org/10.1115/1.4042687.Suche in Google Scholar

[39] W. Mingliang and B. Xue, “The homogeneous balance principle and BTs,” J. Lanzhou Univ., vol. 3, pp. 671–682, 2000.Suche in Google Scholar

Received: 2021-03-17
Revised: 2021-09-04
Accepted: 2021-11-04
Published Online: 2021-12-07

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Original Research Articles
  3. Numerical solutions for variable-order fractional Gross–Pitaevskii equation with two spectral collocation approaches
  4. Threshold dynamics of an HIV-1 model with both virus-to-cell and cell-to-cell transmissions, immune responses, and three delays
  5. Numerical scheme and analytical solutions to the stochastic nonlinear advection diffusion dynamical model
  6. On modeling column crystallizers and a Hermite predictor–corrector scheme for a system of integro-differential equations
  7. On a discrete fractional stochastic Grönwall inequality and its application in the numerical analysis of stochastic FDEs involving a martingale
  8. A new self adaptive Tseng’s extragradient method with double-projection for solving pseudomonotone variational inequality problems in Hilbert spaces
  9. Solitary waves of the RLW equation via least squares method
  10. Optical solitons and stability regions of the higher order nonlinear Schrödinger’s equation in an inhomogeneous fiber
  11. Weighted pseudo asymptotically Bloch periodic solutions to nonlocal Cauchy problems of integrodifferential equations in Banach spaces
  12. Modified inertial subgradient extragradient method for equilibrium problems
  13. Propagation of dark-bright soliton and kink wave solutions of fluidized granular matter model arising in industrial applications
  14. Existence and uniqueness of positive solutions for fractional relaxation equation in terms of ψ-Caputo fractional derivative
  15. Investigation of nonlinear fractional delay differential equation via singular fractional operator
  16. Travelling peakon and solitary wave solutions of modified Fornberg–Whitham equations with nonhomogeneous boundary conditions
  17. The (3 + 1)-dimensional Wazwaz–KdV equations: the conservation laws and exact solutions
  18. Stability and ψ-algebraic decay of the solution to ψ-fractional differential system
  19. Some new characterizations of a space curve due to a modified frame N , C , W in Euclidean 3-space
  20. Numerical simulation of particulate matter propagation in an indoor environment with various types of heating
  21. Inertial accelerated algorithms for solving split feasibility with multiple output sets in Hilbert spaces
  22. Stability analysis and abundant closed-form wave solutions of the Date–Jimbo–Kashiwara–Miwa and combined sinh–cosh-Gordon equations arising in fluid mechanics
  23. Contrasting effects of prey refuge on biodiversity of species
Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2021-0113/html
Button zum nach oben scrollen