Home The (3 + 1)-dimensional Wazwaz–KdV equations: the conservation laws and exact solutions
Article
Licensed
Unlicensed Requires Authentication

The (3 + 1)-dimensional Wazwaz–KdV equations: the conservation laws and exact solutions

  • Arzu Akbulut ORCID logo EMAIL logo , Hadi Rezazadeh , Mir Sajjad Hashemi ORCID logo and Filiz Taşcan
Published/Copyright: November 26, 2021

Abstract

In this study, we dealt with the new conservation theorem and the auxiliary method. We have applied the theorem and method to (3 + 1)-dimensional modified Wazwaz–KdV equations. When we applied a new conservation theorem to given equations, the obtained conservation laws did not satisfy the divergence condition. So, we modified the obtained conservation laws. These conservation laws contain extra terms. Finally, we applied the auxiliary method to given equations. We obtained two solution families with six exact solutions. All the obtained solutions are different from each other. For a suitable value of the solutions, the 3D and 2D surfaces have been plotted by Maple.


Corresponding author: Arzu Akbulut, Department of Mathematics – Computer, Eskişehir Osmangazi University, Art-Science Faculty, Eskişehir, Türkiye, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] P. J. Olver, Application of Lie Groups to Differential Equations, New York, NY, Springer-Verlag, 1993.10.1007/978-1-4612-4350-2Search in Google Scholar

[2] F. Tascan and A. Yakut, “Conservation laws and exact solutions with symmetry reduction of nonlinear reaction diffusion equations,” Int. J. Nonlinear Sci. Numer. Stimul., vol. 16, nos. 3–4, pp. 191–196, 2015. https://doi.org/10.1515/ijnsns-2014-0098.Search in Google Scholar

[3] M. S. Hashemi and D. Baleanu, Lie Symmetry Analysis of Fractional Differential Equations, Boca Raton, CRC Press, 2020.10.1201/9781003008552Search in Google Scholar

[4] M. S. Hashemi, E. Darvishi, and D. Baleanu, “A geometric approach for solving the density-dependent diffusion Nagumo equation,” Adv. Differ. Equ., vol. 2016, no. 1, pp. 1–13, 2016. https://doi.org/10.1186/s13662-016-0818-2.Search in Google Scholar

[5] M. S. Hashemi and Z. Balmeh, “On invariant analysis and conservation laws of the time fractional variant Boussinesq and coupled Boussinesq–Burger’s equations,” Eur. Phys. J. Plus, vol. 133, no. 10, pp. 1–11, 2018. https://doi.org/10.1140/epjp/i2018-12289-1.Search in Google Scholar

[6] M. S. Hashemi, A. Haji-Badali, and F. Alizadeh, “Non-classical Lie symmetry and conservation laws of the nonlinear time-fractional Kundu–Eckhaus (KE) equation,” Pramana, vol. 95, no. 3, pp. 1–12, 2021. https://doi.org/10.1007/s12043-021-02135-8.Search in Google Scholar

[7] A. H. Kara, A. Biswas, Q. Zhou, L. Moraru, S. P. Moshokoa, and M. Belic, “Conservation laws for optical solitons with Chen–Lee–Liu equation,” Optik, vol. 174, pp. 195–198, 2018. https://doi.org/10.1016/j.ijleo.2018.08.067.Search in Google Scholar

[8] Y. S. Ozkan, A. R. Seadawy, and E. Yasar, “On the optical solitons and local conservation laws of Chen–Lee–Liu dynamical wave equation,” Optik, vol. 227, p. 165392, 2020.10.1016/j.ijleo.2020.165392Search in Google Scholar

[9] D. Poole and W. Hereman, “Symbolic computation of conservation laws for nonlinear PDEs in multiple space dimensions,” J. Symbolic Comput., vol. 46, pp. 1355–1377, 2011. https://doi.org/10.1016/j.jsc.2011.08.014.Search in Google Scholar

[10] G. W. Wang and M. S. Hashemi, “Lie symmetry analysis and soliton solutions of time-fractional K(m,n) equation,” Pramana, vol. 88, pp. 1–6, 2017. https://doi.org/10.1007/s12043-016-1320-9.Search in Google Scholar

[11] M. S. Hashemi and D. Baleanu, “Lie symmetry analysis and exact solutions of the time fractional gas dynamics equation,” J. Optoelectron. Adv. Mater., vol. 18, pp. 383–388, 2016.Search in Google Scholar

[12] A. Akbulut, M. Kaplan, and F. Taşcan, “Conservation laws and exact solutions of system of Boussinesq–Burgers equations; ICNPAA 2016 World Congress,” AIP Conf. Proc., vol. 1798, p. 020070. https://doi.org/10.1063/1.4972662.Search in Google Scholar

[13] R. Popovych, “Direct methods of construction of conservation laws,” Physics Auc, vol. 16, pp. 81–94, 2006.Search in Google Scholar

[14] M. L. Gandarias and C. M. Khalique, “Symmetries, solutions and conservation laws of a class of nonlinear dispersive wave equations,” Commun. Nonlinear Sci. Numer. Simulat., vol. 32, pp. 114–121, 2016. https://doi.org/10.1016/j.cnsns.2015.07.010.Search in Google Scholar

[15] Y. Yıldırım and E. Yaşar, “A (2 + 1)-dimensional breaking soliton equation: solutions and conservation laws,” Chaos, Solit. Fractals, vol. 107, pp. 146–155, 2018.10.1016/j.chaos.2017.12.016Search in Google Scholar

[16] N. Çelik, A. R. Seadawy, Y. S. Özkan, and E. Yaşar, “A model of solitary waves in a nonlinear elastic circular rod: abundant different type exact solutions and conservation laws,” Chaos, Solit. Fractals, vol. 143, p. 110486, 2021. https://doi.org/10.1016/j.chaos.2020.110486.Search in Google Scholar

[17] S. C. Anco and G. W. Bluman, “Direct construction method for conservation laws of partial differential equations. Part I: examples of conservation law classifications,” Eur. J. Appl. Math., vol. 13, pp. 545–566, 2002. https://doi.org/10.1017/s095679250100465x.Search in Google Scholar

[18] R. Naz, F. M. Mahomed, and D. P. Mason, “Comparison of different approaches to conservation laws for some partial differential equations in fluid mechanics,” Appl. Math. Comput., vol. 205, pp. 212–230, 2008. https://doi.org/10.1016/j.amc.2008.06.042.Search in Google Scholar

[19] G. L. Caraffini and M. Galvani, “Symmetries and exact solutions via conservation laws for some partial differential equations of mathematical physics,” Appl. Math. Comput., vol. 219, pp. 1474–1484, 2012. https://doi.org/10.1016/j.amc.2012.07.050.Search in Google Scholar

[20] M. Rosa, J. C. Camacho, M. S. Bruzón, and M. L. Gandarias, “Conservation laws, symmetries, and exact solutions of the classical Burgers–Fisher equation in two dimensions,” J. Comput. Appl. Math., vol. 354, pp. 545–550, 2019. https://doi.org/10.1016/j.cam.2018.11.008.Search in Google Scholar

[21] M. S. Hashemi, F. Bahrami, and R. Najafi, “Lie symmetry analysis of steady–state fractional reaction-convection-diffusion equation,” Optik, vol. 138, pp. 240–249, 2017. https://doi.org/10.1016/j.ijleo.2017.03.094.Search in Google Scholar

[22] M. S. Hashemi, M. Inc, B. Kilic, and A. Akgül, “On solitons and invariant solutions of the Magneto-electro-elastic circular rod,” Waves in Random and Complex Media, vol. 26, pp. 259–271, 2016. https://doi.org/10.1080/17455030.2015.1124153.Search in Google Scholar

[23] M. Inc, A. Yusuf, A. I. Aliyu, and M. S. Hashemi, “Soliton solutions, stability analysis and conservation laws for the brusselator reaction diffusion model with time-and constant-dependent coefficients,” Eur. Phys. J. Plus, vol. 133, p. 168, 2018. https://doi.org/10.1140/epjp/i2018-11989-8.Search in Google Scholar

[24] N. H. Ibragimov, “Conservation laws and non-invariant solutions of anisotropic wave equations with a source,” Nonlinear Anal. R. World Appl., vol. 40, pp. 82–94, 2018. https://doi.org/10.1016/j.nonrwa.2017.08.005.Search in Google Scholar

[25] N. H. Ibragimov, “A new conservation theorem,” J. Math. Anal. Appl., vol. 333, pp. 311–328, 2007. https://doi.org/10.1016/j.jmaa.2006.10.078.Search in Google Scholar

[26] A. Bekir, “On traveling wave solutions to combined KdV-mKdV equation and modified Burgers-KdV equation,” Commun. Nonlinear Sci. Numer. Simulat., vol. 14, no. 4, pp. 1038–1042, 2009. https://doi.org/10.1016/j.cnsns.2008.03.014.Search in Google Scholar

[27] A. Akbulut and F. Taşcan, “Application of conservation theorem and modified extended tanh-function method to (1 + 1)-dimensional nonlinear coupled Klein–Gordon–Zakharov equation,” Chaos, Solit. Fractals, vol. 104, pp. 33–40, 2017. https://doi.org/10.1016/j.chaos.2017.07.025.Search in Google Scholar

[28] H. M. Baskonus, H. Bulut, and T. A. Sulaiman, “New complex hyperbolic structures to the Lonngren-wave equation by using sine-Gordon expansion method,” Appl. Math. Nonlinear Sci., vol. 4, no. 1, pp. 129–138, 2019. https://doi.org/10.2478/amns.2019.1.00013.Search in Google Scholar

[29] A. Kurt and O. Tasbozan, “Analytic solutions of Liouville equation using extended trial equation method and the functional varible method,” Appl. Math. Inf. Sci. Lett., vol. 3, no. 3, pp. 93–96, 2015.Search in Google Scholar

[30] M. S. Islam, K. Khan, and M. A. Akbar, “Application of the improved F-expansion method with Riccati equation to find the exact solution of the nonlinear evolution equations,” Journal of the Egyptian Mathematical Society, vol. 25, pp. 13–18, 2017. https://doi.org/10.1016/j.joems.2016.03.008.Search in Google Scholar

[31] A. Bekir, O. Güner, A. H. Bhrawy, and A. Biswas, “Solving nonlinear fractional differential equations using exp function and (G′/G) expansion methods,” Rom. Journ. Phys., vol. 60, nos. 3–4, pp. 360–378, 2015.Search in Google Scholar

[32] Ö. Güner, E. Aksoy, A. Bekir, and A. Çevikel, “Different methods for (3 + 1)-dimensional space–time fractional modified KdV–Zakharov–Kuznetsov equation,” Comput. Math. Appl., vol. 71, no. 6, pp. 1259–1269, 2016. https://doi.org/10.1016/j.camwa.2016.02.004.Search in Google Scholar

[33] B. Ayhan and A. Bekir, “The (G’/G)-expansion method for the nonlinear lattice Equations,” Commun. Nonlinear Sci. Numer. Simulat., vol. 17, no. 9, pp. 3490–3498, 2012. https://doi.org/10.1016/j.cnsns.2012.01.009.Search in Google Scholar

[34] A. Akbulut, “Lie symmetries, conservation laws and exact solutions for time fractional Ito equation,” Waves in Random and Complex Media, 2021, in press, https://doi.org/10.1080/17455030.2021.1900624.Search in Google Scholar

[35] Y. S. Ozkan, E. Yasar, and A. R. Seadawy, “A third-order nonlinear Schrödinger equation: the exact solutions, group-invariant solutions and conservation laws,” Journal of Taibah University for Science, vol. 14, no. 1, pp. 585–597, 2020. https://doi.org/10.1080/16583655.2020.1760513.Search in Google Scholar

[36] Ö. Güner, S. San, A. Bekir, and E. Yaşar, “Conservation laws and soliton solutions of the (1 + 1)-dimensional modified improved Boussinesq equation,” Z. Naturforsch. A, vol. 70, pp. 669–672, 2015. https://doi.org/10.1515/zna-2015-0172.Search in Google Scholar

[37] Ö. Güner, A. Bekir, and F. Karaca, “Optical soliton solutions of nonlinear evolution equations using ansatz method,” Optik, vol. 127, no. 1, pp. 131–134, 2016. https://doi.org/10.1016/j.ijleo.2015.09.222.Search in Google Scholar

[38] M. S. Osman, H. Rezazadeh, M. Eslami, A. Neirameh, and M. Mirzazadeh, “Analytical study of solitons to benjamin-bona-mahony-peregrine equation with power law nonlinearity by using three methods,” University Politehnica of Bucharest Scientific Bulletin-Series A-Applied Mathematics and Physics, vol. 80, no. 4, pp. 267–278, 2018.Search in Google Scholar

[39] H. Rezazadeh, M. S. Osman, M. Eslami, et al.., “Mitigating Internet bottleneck with fractional temporal evolution of optical solitons having quadratic-cubic nonlinearity,” Optik, vol. 164, pp. 84–92, 2018. https://doi.org/10.1016/j.ijleo.2018.03.006.Search in Google Scholar

[40] M. S. Osman, A. Korkmaz, H. Rezazadeh, M. Mirzazadeh, M. Eslami, and Q. Zhou, “The unified method for conformable time fractional Schrödinger equation with perturbation terms,” Chin. J. Phys., vol. 56, no. 5, pp. 2500–2506, 2018. https://doi.org/10.1016/j.cjph.2018.06.009.Search in Google Scholar

[41] H. Rezazadeh, A. Korkmaz, M. M. Khater, M. Eslami, D. Lu, and R. A. Attia, “New exact traveling wave solutions of biological population model via the extended rational sinh-cosh method and the modified Khater method,” Mod. Phys. Lett. B, vol. 33, no. 28, p. 1950338, 2019. https://doi.org/10.1142/s021798491950338x.Search in Google Scholar

[42] R. M. Jena, S. Chakraverty, H. Rezazadeh, and D. Domiri Ganji, “On the solution of time-fractional dynamical model of Brusselator reaction-diffusion system arising in chemical reactions,” Math. Methods Appl. Sci., vol. 43, no. 7, pp. 3903–3913, 2020.10.1002/mma.6141Search in Google Scholar

[43] Y. S. Ozkan, E. Yasar, and A. R. Seadawy, “On the multi-waves, interaction and Peregrine-like rational solutions of perturbed Radhakrishnan–Kundu–Lakshmanan equation,” Phys. Scripta, vol. 95, no. 8, p. 085205, 2020. https://doi.org/10.1088/1402-4896/ab9af4.Search in Google Scholar

[44] N . Ibragimov, CRC Handbook of Lie Group Analysis of Differential Equations Vol-Ume1 Symmetries Exact Solutions and Conservation Laws, United States of America, CRC Press. Inc, 1993.Search in Google Scholar

[45] G. W. Bluman and S. Kumei, Symmetries and Differential Equations with 21 Illustrations, New York, Springer-Verlag, 1989.10.1007/978-1-4757-4307-4Search in Google Scholar

[46] A. Akbulut and F. Taşcan, “On symmetries, conservation laws and exact solutions of the nonlinear Schrödinger–Hirota equation,” Waves in Random and Complex Media, vol. 28, no. 2, pp. 389–398, 2018. https://doi.org/10.1080/17455030.2017.1356027.Search in Google Scholar

[47] E. Yaşar, “On the conservation laws and invariant solutions of the mKdV equation,” J. Math. Anal. Appl., vol. 363, no. 1, pp. 174–181, 2010.10.1016/j.jmaa.2009.08.030Search in Google Scholar

[48] A. Akbulut and M. Kaplan, “Auxiliary equation method for time-fractional differential equations with conformable derivative,” Comput. Math. Appl., vol. 75, pp. 876–882, 2018. https://doi.org/10.1016/j.camwa.2017.10.016.Search in Google Scholar

[49] H. Rezazadeh, A. Korkmaz, M. Eslami, and S. M. Mirhosseini Alizamini, “A large family of optical solutions to Kundu–Eckhaus model by a new auxiliary equation method,” Opt. Quant. Electron., vol. 51, p. 84, 2019. https://doi.org/10.1007/s11082-019-1801-4.Search in Google Scholar

[50] A. Akbulut, M. Kaplan, and A. Bekir, “Auxiliary equation method for fractional differential equations with modified Riemann–Liouville derivative,” Int. J. Nonlinear Sci. Numer. Stimul., vol. 17, nos. 7–8, pp. 413–420, 2016. https://doi.org/10.1515/ijnsns-2016-0023.Search in Google Scholar

[51] M. Kaplan, A. Akbulut, and A. Bekir, “Exact travelling wave solutions of the nonlinear evolution equations by auxiliary equation method,” Z. Naturforsch. A, vol. 70, pp. 969–974, 2015. https://doi.org/10.1515/zna-2015-0122.Search in Google Scholar

[52] W. Hereman, Exact Solutions of Nonlinear Partial Differential Equations the tanh/sech Method, Champaign. Illinois, Wolfram Research Academic Intern Program Inc., 2000, pp. 1–14.Search in Google Scholar

[53] A. M. Wazwaz, “De gruyter,” Open Eng., vol. 7, pp. 169–174, 2017. https://doi.org/10.1515/eng-2017-0023.Search in Google Scholar

[54] R. I. Nuruddeen, “Multiple soliton solutions for the (3 + 1) conformable space–time fractional modified Korteweg–de-Vries equations,” J. Ocean Eng. Sci., vol. 3, pp. 11–18, 2018. https://doi.org/10.1016/j.joes.2017.11.004.Search in Google Scholar

[55] R. Narain and A. H. Kara, “On the redefinition of the variational and ‘partial’ variational conservation laws in a classof nonlinear PDEs with mixed derivatives,” Math. Comput. Appl., vol. 15, no. 4, pp. 732–741, 2010. https://doi.org/10.3390/mca15040732.Search in Google Scholar

Received: 2021-04-14
Revised: 2021-08-05
Accepted: 2021-11-04
Published Online: 2021-11-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Original Research Articles
  3. Numerical solutions for variable-order fractional Gross–Pitaevskii equation with two spectral collocation approaches
  4. Threshold dynamics of an HIV-1 model with both virus-to-cell and cell-to-cell transmissions, immune responses, and three delays
  5. Numerical scheme and analytical solutions to the stochastic nonlinear advection diffusion dynamical model
  6. On modeling column crystallizers and a Hermite predictor–corrector scheme for a system of integro-differential equations
  7. On a discrete fractional stochastic Grönwall inequality and its application in the numerical analysis of stochastic FDEs involving a martingale
  8. A new self adaptive Tseng’s extragradient method with double-projection for solving pseudomonotone variational inequality problems in Hilbert spaces
  9. Solitary waves of the RLW equation via least squares method
  10. Optical solitons and stability regions of the higher order nonlinear Schrödinger’s equation in an inhomogeneous fiber
  11. Weighted pseudo asymptotically Bloch periodic solutions to nonlocal Cauchy problems of integrodifferential equations in Banach spaces
  12. Modified inertial subgradient extragradient method for equilibrium problems
  13. Propagation of dark-bright soliton and kink wave solutions of fluidized granular matter model arising in industrial applications
  14. Existence and uniqueness of positive solutions for fractional relaxation equation in terms of ψ-Caputo fractional derivative
  15. Investigation of nonlinear fractional delay differential equation via singular fractional operator
  16. Travelling peakon and solitary wave solutions of modified Fornberg–Whitham equations with nonhomogeneous boundary conditions
  17. The (3 + 1)-dimensional Wazwaz–KdV equations: the conservation laws and exact solutions
  18. Stability and ψ-algebraic decay of the solution to ψ-fractional differential system
  19. Some new characterizations of a space curve due to a modified frame N , C , W in Euclidean 3-space
  20. Numerical simulation of particulate matter propagation in an indoor environment with various types of heating
  21. Inertial accelerated algorithms for solving split feasibility with multiple output sets in Hilbert spaces
  22. Stability analysis and abundant closed-form wave solutions of the Date–Jimbo–Kashiwara–Miwa and combined sinh–cosh-Gordon equations arising in fluid mechanics
  23. Contrasting effects of prey refuge on biodiversity of species
Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2021-0161/html
Scroll to top button