Startseite Technik Inertial accelerated algorithms for solving split feasibility with multiple output sets in Hilbert spaces
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Inertial accelerated algorithms for solving split feasibility with multiple output sets in Hilbert spaces

  • Chibueze C. Okeke , Lateef O. Jolaoso und Yekini Shehu ORCID logo EMAIL logo
Veröffentlicht/Copyright: 24. November 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we propose two inertial accelerated algorithms which do not require prior knowledge of operator norm for solving split feasibility problem with multiple output sets in real Hilbert spaces. We prove weak and strong convergence results for approximating the solution of the considered problem under certain mild conditions. We also give some numerical examples to demonstrate the performance and efficiency of our proposed algorithms over some existing related algorithms in the literature.

2010 Mathematics Subject Classification: 47H09; 47H10; 49J20; 49J40

Corresponding author: Yekini Shehu, Department of Mathematics, Zhejiang Normal University, Jinhua, 321004, China, E-mail:

Acknowledgments

This paper is dedicated to the loving memory of late Professor Charles Ejike Chidume (1947–2021).

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] Y. Censor and T. Elfving, “A multiprojection algorithm using Bregman projections in a product space,” Numer. Algorithm., vol. 8, nos. 2–4, pp. 221–239, 1994. https://doi.org/10.1007/bf02142692.Suche in Google Scholar

[2] C. Byrne, “Iterative oblique projection onto convex sets and split feasibility,” Inverse Probl., vol. 18, no. 2, pp. 441–453, 2002. https://doi.org/10.1088/0266-5611/18/2/310.Suche in Google Scholar

[3] C. Byrne, “A unified treatment of some iterative algorithms in signal processing and image reconstruction,” Inverse Probl., vol. 20, no. 1, pp. 103–120, 2004. https://doi.org/10.1088/0266-5611/20/1/006.Suche in Google Scholar

[4] C. Byrne, Y. Censor, A. Gibali, and S. Reich, “The split common null point problem,” J. Nonlinear Convex Anal., vol. 13, no. 4, pp. 759–775, 2012.Suche in Google Scholar

[5] Y. Censor, A. Gibali, and S. Reich, “Algorithms for split variational inequality problems,” Numer. Algorithm., vol. 59, no. 2, pp. 301–323, 2012. https://doi.org/10.1007/s11075-011-9490-5.Suche in Google Scholar

[6] V. Dadashi, “Shrinking projection algorithms for split common null point problem,” Bull. Aust. Math. Soc., vol. 96, no. 2, pp. 299–306, 2017. https://doi.org/10.1017/s000497271700017x.Suche in Google Scholar

[7] G. Z. Eskandani, M. Raeisi, and T. M. Rassias, “A hybrid extragradient method for solving pseudomonotone equilibrium problem using Bregman distance,” J. Fixed Point Theory Appl., vol. 20, no. 3, p. 27, 2018. https://doi.org/10.1007/s11784-018-0611-9.Suche in Google Scholar

[8] F. U. Ogbuisi, “The projection method with inertial extrapolation for solving split equilibrium problems in Hilbert spaces,” Appl. Set-Valued Anal. Optim., vol. 3, pp. 239–255, 2021.10.23952/asvao.3.2021.2.08Suche in Google Scholar

[9] F. U. Ogbuisi, O. S. Iyiola, J. M. T. Ngnotchouye, and T. M. M. Shumba, “On inertial type self-adaptive iterative algorithms for solving pseudomonotone equilibrium problems and fixed point problems,” J. Nonlinear Funct. Anal., vol. 2021, 2021, Art no. 4.10.23952/jnfa.2021.4Suche in Google Scholar

[10] S. Takahashi and W. Takahashi, “The split common null point problem and the shrinking projection method in Banach spaces,” Optimization, vol. 65, no. 2, pp. 281–287, 2016. https://doi.org/10.1080/02331934.2015.1020943.Suche in Google Scholar

[11] W. Takahashi, “The split feasibility problem and the shrinking projection in Banach spaces,” J. Nonlinear Convex Anal., vol. 16, no. 7, pp. 1449–1459, 2015.Suche in Google Scholar

[12] W. Takahashi, “The split common null point problem in Banach spaces,” Arch. Math., vol. 104, no. 4, pp. 357–365, 2015. https://doi.org/10.1007/s00013-015-0738-5.Suche in Google Scholar

[13] F. Wang and H. K. Xu, “Cyclic algorithms for split feasibility problems in Hilbert spaces,” Nonlinear Anal., vol. 74, no. 12, pp. 4105–4111, 2011. https://doi.org/10.1016/j.na.2011.03.044.Suche in Google Scholar

[14] Q. Yang, “The relaxed CQ algorithm solving the split feasibility problem,” Inverse Probl., vol. 20, no. 4, pp. 1261–1266, 2004. https://doi.org/10.1088/0266-5611/20/4/014.Suche in Google Scholar

[15] H. K. Xu, “A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility problem,” Inverse Probl., vol. 22, no. 6, pp. 2021–2034, 2006. https://doi.org/10.1088/0266-5611/22/6/007.Suche in Google Scholar

[16] H. K. Xu, “Iterative methods for split feasibility problem in infinite dimensional Hilbert spaces,” Inverse Probl., vol. 26, no. 10, pp. 105018, 2010. https://doi.org/10.1088/0266-5611/26/10/105018.Suche in Google Scholar

[17] E. Masad and S. Reich, “A note on the multiple-set split convex feasibility problem in Hilbert space,” J. Nonlinear Convex Anal., vol. 8, no. 3, pp. 367–371, 2007.Suche in Google Scholar

[18] Y. Censor and A. Segal, “The split common fixed point problem for directed operators,” J. Convex Anal., vol. 16, no. 2, pp. 587–600, 2009. https://doi.org/10.1111/j.1475-3995.2008.00684.x.Suche in Google Scholar PubMed PubMed Central

[19] A. Moudafi, “The split common fixed point problem for demicontractive mappings,” Inverse Probl., vol. 26, no. 5, p. 6, 2010. https://doi.org/10.1088/0266-5611/26/5/055007.Suche in Google Scholar PubMed PubMed Central

[20] M. Abbas and H. Iqbal, “Two Inertial extragradient viscosity algorithms for solving variational inequality and fixed point problems,” J. Nonlinear Var. Anal., vol. 4, pp. 377–398, 2020.10.23952/jnva.4.2020.3.04Suche in Google Scholar

[21] M. T. Tuyen, “A strong convergence theorem for the split common null point problem in Banach spaces,” Appl. Math. Optim., vol. 79, no. 1, pp. 207–227, 2019. https://doi.org/10.1007/s00245-017-9427-z.Suche in Google Scholar

[22] M. T. Tuyen, N. S. Ha, and N. T. T. Thuy, “A shrinking projection method for solving the split common null point problem in Banach spaces,” Numer. Algorithm., vol. 81, no. 3, pp. 813–832, 2019. https://doi.org/10.1007/s11075-018-0572-5.Suche in Google Scholar

[23] M. T. Tuyen and N. S. Ha, “A strong convergence theorem for solving the split feasibility and fixed point problems in Banach spaces,” J. Fixed Point Theory Appl., vol. 20, no. 4, p. 17, 2018. https://doi.org/10.1007/s11784-018-0622-6.Suche in Google Scholar

[24] J. Wang, Y. Hu, C. Li, and J.-C. Yao, “Linear convergence of CQ algorithms and applications in gene regulatory network inference,” Inverse Probl., vol. 33, no. 5, p. 25, 2017. https://doi.org/10.1088/1361-6420/aa6699.Suche in Google Scholar

[25] Y. Censor, T. Bortfeld, B. Martin, and A. Trofimov, “A unified approach for inversion problems in intensity modulated radiation therapy,” Phys. Med. Biol., vol. 51, pp. 2353–2365, 2006. https://doi.org/10.1088/0031-9155/51/10/001.Suche in Google Scholar PubMed

[26] S. Penfold, R. Zalas, M. Casiraghi, M. Brooke, Y. Censor, and R. Schulte, “Sparsity constrained split feasibility for dose-volume constraints in inverse planning of intensity-modulated photon or proton therapy,” Phys. Med. Biol., vol. 62, p. 3599, 2017. https://doi.org/10.1088/1361-6560/aa602b.Suche in Google Scholar PubMed PubMed Central

[27] H. He and H.-K. Xu, “Splitting methods for split feasibility problems with application to Dantzig selectors,” Inverse Probl., vol. 33, p. 28, 2017. https://doi.org/10.1088/1361-6420/aa5ec5.Suche in Google Scholar

[28] S. Reich, M. T. Tuyen, and T. N. H. Mai, “The split feasibility problem with multiple output sets in Hilbert spaces,” Optim. Lett., vol. 14, pp. 2335–2353, 2020. https://doi.org/10.1007/s11590-020-01555-6.Suche in Google Scholar

[29] S. Reich and T. M. Tuyen, “Iterative methods for solving the generalized split common null point problem in Hilbert spaces,” Optimization, vol. 69, pp. 1013–1038, 2020.10.1080/02331934.2019.1655562Suche in Google Scholar

[30] S. Reich, T. M. Tuyen, and M. T. N. Ha, “An optimization approach to solving the split feasibility problem in Hilbert spaces,” J. Global Optim., vol. 79, pp. 837–852, 2021. https://doi.org/10.1007/s10898-020-00964-2.Suche in Google Scholar

[31] F. Alvarez and H. Attouch, “An inertial proximal method for maximal monotone operator via discretization of nonlinear oscillator with damping,” Set-Valued Anal., vol. 9, nos. 1–2, pp. 3–11, 2001. https://doi.org/10.1023/a:1011253113155.10.1023/A:1011253113155Suche in Google Scholar

[32] F. Alvarez, “On the minimization of a second other dissipative dynamical system in Hilbert space,” SIAM J. Control Optim., vol. 38, no. 4, pp. 1102–1119, 2000. https://doi.org/10.1137/s0363012998335802.Suche in Google Scholar

[33] F. Alvarez, “Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space,” SIAM J. Optim., vol. 14, no. 3, pp. 773–782, 2003.10.1137/S1052623403427859Suche in Google Scholar

[34] P. E. Maingé, “Convergence theorems for inertial KM-type algorithms,” J. Comput. Appl. Math., vol. 219, no. 1, pp. 223–236, 2008. https://doi.org/10.1016/j.cam.2007.07.021.Suche in Google Scholar

[35] H. Attouch, J. Peypouquet, and P. Redont, “A dynamical approach to an inertial forward-backward algorithm for convex minimization,” SIAM J. Optim., vol. 24, no. 1, pp. 232–256, 2014. https://doi.org/10.1137/130910294.Suche in Google Scholar

[36] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. Imag. Sci., vol. 2, no. 1, pp. 183–202, 2009. https://doi.org/10.1137/080716542.Suche in Google Scholar

[37] R. I. Bot and E. R. Csetnek, “An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems,” Numer. Algorithm., vol. 71, no. 3, pp. 519–540, 2016.10.1007/s11075-015-0007-5Suche in Google Scholar

[38] R. I. Bot and E. R. Csetnek, “An inertial alternating direction method of multipliers,” Minimax Theory Appl., vol. 1, no. 1, pp. 29–49, 2016.Suche in Google Scholar

[39] R. I. Bot and E. R. Csetnek, “A hybrid proximal-extragradient algorithm with inertial effects,” Numer. Funct. Anal. Optim., vol. 36, no. 8, pp. 951–963, 2015.10.1080/01630563.2015.1042113Suche in Google Scholar

[40] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Monographs and Textbooks in Pure and Applied Mathematics, 83, New York, Marcel Dekker, Inc., 1984, p. ix+170.Suche in Google Scholar

[41] K. Gobel and W. A. Kirk, Topics in Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics, 28, Cambridge, Cambridge University Press, 1990, p. viii+244.Suche in Google Scholar

[42] P. E. Maingé, “Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization,” Set-Valued Anal., vol. 16, nos. 7–8, pp. 899–912, 2008. https://doi.org/10.1007/s11228-008-0102-z.Suche in Google Scholar

[43] H. K. Xu, “Iterative algorithm for nonlinear operators,” J. Lond. Math. Soc., vol. 66, no. 1, pp. 240–256, 2002. https://doi.org/10.1112/s0024610702003332.Suche in Google Scholar

[44] H. H. Bauschke and A. P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics, New York, Springer, 2011.10.1007/978-1-4419-9467-7Suche in Google Scholar

[45] Z. Opial, “Weak convergence of the sequence of successive approximations for nonexpansive mappings,” Bull. Am. Math. Soc., vol. 73, pp. 591–597, 1967. https://doi.org/10.1090/s0002-9904-1967-11761-0.Suche in Google Scholar

[46] J. Peypouquet, Convex Optimization in Normed Spaces. Springer Briefs in Optimization, London, Springer, 2015.10.1007/978-3-319-13710-0Suche in Google Scholar

Received: 2021-03-19
Accepted: 2021-11-04
Published Online: 2021-11-24

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Original Research Articles
  3. Numerical solutions for variable-order fractional Gross–Pitaevskii equation with two spectral collocation approaches
  4. Threshold dynamics of an HIV-1 model with both virus-to-cell and cell-to-cell transmissions, immune responses, and three delays
  5. Numerical scheme and analytical solutions to the stochastic nonlinear advection diffusion dynamical model
  6. On modeling column crystallizers and a Hermite predictor–corrector scheme for a system of integro-differential equations
  7. On a discrete fractional stochastic Grönwall inequality and its application in the numerical analysis of stochastic FDEs involving a martingale
  8. A new self adaptive Tseng’s extragradient method with double-projection for solving pseudomonotone variational inequality problems in Hilbert spaces
  9. Solitary waves of the RLW equation via least squares method
  10. Optical solitons and stability regions of the higher order nonlinear Schrödinger’s equation in an inhomogeneous fiber
  11. Weighted pseudo asymptotically Bloch periodic solutions to nonlocal Cauchy problems of integrodifferential equations in Banach spaces
  12. Modified inertial subgradient extragradient method for equilibrium problems
  13. Propagation of dark-bright soliton and kink wave solutions of fluidized granular matter model arising in industrial applications
  14. Existence and uniqueness of positive solutions for fractional relaxation equation in terms of ψ-Caputo fractional derivative
  15. Investigation of nonlinear fractional delay differential equation via singular fractional operator
  16. Travelling peakon and solitary wave solutions of modified Fornberg–Whitham equations with nonhomogeneous boundary conditions
  17. The (3 + 1)-dimensional Wazwaz–KdV equations: the conservation laws and exact solutions
  18. Stability and ψ-algebraic decay of the solution to ψ-fractional differential system
  19. Some new characterizations of a space curve due to a modified frame N , C , W in Euclidean 3-space
  20. Numerical simulation of particulate matter propagation in an indoor environment with various types of heating
  21. Inertial accelerated algorithms for solving split feasibility with multiple output sets in Hilbert spaces
  22. Stability analysis and abundant closed-form wave solutions of the Date–Jimbo–Kashiwara–Miwa and combined sinh–cosh-Gordon equations arising in fluid mechanics
  23. Contrasting effects of prey refuge on biodiversity of species
Heruntergeladen am 5.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2021-0116/html
Button zum nach oben scrollen