Startseite Optical solitons and stability regions of the higher order nonlinear Schrödinger’s equation in an inhomogeneous fiber
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Optical solitons and stability regions of the higher order nonlinear Schrödinger’s equation in an inhomogeneous fiber

  • Nauman Raza , Ahmad Javid , Asma Rashid Butt und Haci Mehmet Baskonus EMAIL logo
Veröffentlicht/Copyright: 26. November 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper concerns with the integrability of variable coefficient fifth order nonlinear Schrödinger’s equation describing the dynamics of attosecond pulses in inhomogeneous fibers. Variable coefficients incorporate varying dispersion and nonlinearity which are of physical significance in considering the nonuniform boundaries of fibers as well as the inhomogeneities of the media. The well-known exp(−φ(s))-expansion method is used to retrieve singular and periodic solitons with the aid of symbolic computation. The structures of the obtained solutions are discussed along with their existence criteria. Moreover, the modulation instability analysis is carried out to identify the instability regions. A dispersion relation is extracted between wave number and frequency. The optimal value of the frequency is found for the occurrence of the instability. A detailed discussion of the results is also given along with graphics.


Corresponding author: Haci Mehmet Baskonus, Faculty of Education, Harran University, Sanliurfa, Türkiye, E-mail:

  1. Author contribution: All the authors contributed equally in drafted the manuscript, read and approved the final version of the manuscript.

  2. Research funding: None declared.

  3. Conflict of interest statement: All the authors confirm that they have no competing interests.

References

[1] H. H. Chen and Y. C. Lee, “Internal-wave solitons of fluids with finite depth,” Phys. Rev. Lett., vol. 43, pp. 264–266, 1979. https://doi.org/10.1103/physrevlett.43.264.Suche in Google Scholar

[2] Z. Z. Lan and B. Gao, “Lax pair, infinitely many conservation laws and solitons for a (2 + 1)-dimensional Heisenberg ferromagnetic spin chain equation with time-dependent coefficients,” Appl. Math. Lett., vol. 79, pp. 6–12, 2018. https://doi.org/10.1016/j.aml.2017.11.010.Suche in Google Scholar

[3] Z. Z. Lan, “Conservation laws, modulation instability and solitons interactions for a nonlinear Schrödinger equation with the sextic operators in an optical fiber,” Opt. Quant. Electron., vol. 50, p. 340, 2018. https://doi.org/10.1007/s11082-018-1597-7.Suche in Google Scholar

[4] Z. Z. Lan, B. Gao, and M. J. Du, “Dark solitons behaviors for a (2 + 1)-dimensional coupled nonlinear Schrödinger system in an optical fiber,” Chaos, Solit. Fractals, vol. 111, pp. 169–174, 2018. https://doi.org/10.1016/j.chaos.2018.04.005.Suche in Google Scholar

[5] N. Raza and A. Javid, “Optical dark and singular solitons to the Biswas-Milovic equation in nonlinear optics with spatio-temporal dispersion,” Optik, vol. 158, pp. 1049–1057, 2018. https://doi.org/10.1016/j.ijleo.2017.12.186.Suche in Google Scholar

[6] A. Javid and N. Raza, “Singular and dark optical solitons to the well posed Lakshmanan-Porsezian-Daniel model,” Optik, vol. 171, pp. 120–129, 2018. https://doi.org/10.1016/j.ijleo.2018.06.021.Suche in Google Scholar

[7] N. Raza and A. Javid, “Generalizations of optical solitons with dual dispersion in the presence of Kerr and quadratic-cubic law nonlinearities,” Mod. Phys. Lett. B, vol. 33, p. 1850427, 2019. https://doi.org/10.1142/s0217984918504274.Suche in Google Scholar

[8] D. Kumar, J. Singh, S. Kumar, and Sushila, “Numerical computation of Klein-Gordon equations arising in quantum field theory by using homotopy analysis transform method,” Alexandria Eng. J., vol. 53, pp. 469–474, 2014. https://doi.org/10.1016/j.aej.2014.02.001.Suche in Google Scholar

[9] D. Kumar, K. Hosseini, and F. Samadani, “The sine-Gordon expansion method to look for the traveling wave solutions of the Tzitz-ica type equations in nonlinear optics,” Optik, vol. 149, pp. 439–446, 2017. https://doi.org/10.1016/j.ijleo.2017.09.066.Suche in Google Scholar

[10] A. R. Seadawy and D. A. K. KumarChakrabarty, “Dispersive optical soliton solutions for the hyperbolic and cubic-quintic nonlinear Schrodinger equations via the extended sinh-Gordon equation expansion method,” Eur. Phys. J. Plus, vol. 133, p. 182, 2018. https://doi.org/10.1140/epjp/i2018-12027-9.Suche in Google Scholar

[11] K. K. Ali, A. M. Wazwaz, and M. S. Osman, “Optical soliton solutions to the generalized nonautonomous nonlinear Schr0dinger equations in optical fibers via the sine-Gordon expansion method,” Optik (Stuttg.), vol. 208, p. 164132, 2020.10.1016/j.ijleo.2019.164132Suche in Google Scholar

[12] K. K. Ali, M. S. Osman, and M. Abdel-Aty, “New optical solitary wave solutions of Fokas-Lenells equation in optical fiber via Sine-Gordon expansion method,” Alexandria Eng. J., vol. 59, no. 3, pp. 1191–1196, 2020. https://doi.org/10.1016/j.aej.2020.01.037.Suche in Google Scholar

[13] H. Khatri, A. Malik, and M. S. Gautam, “Traveling, periodic and localized solitary waves solutions of the (4+1)-dimensional nonlinear Fokas equation,” SN Appl. Sci., vol. 2, p. 1829, 2020. https://doi.org/10.1007/s42452-020-03615-z.Suche in Google Scholar

[14] H. Kumar and F. Chand, “Optical solitary wave solutions for the higher order nonlinear Schrdinger equation with self-steepening and self-frequency shift effects,” Opt. Laser Technol., vol. 54, pp. 265–273, 2013. https://doi.org/10.1016/j.optlastec.2013.05.031.Suche in Google Scholar

[15] H. Kumar and F. Chand, “Chirped and chirpfree soliton solutions of generalized nonlinear Schrdinger equation with distributed coefficients,” Optik, vol. 125, no. 12, pp. 2938–2949, 2014. https://doi.org/10.1016/j.ijleo.2013.12.072.Suche in Google Scholar

[16] W. X. Ma, “Lump solutions to the Kadomtsev-Petviashvili equation,” Phys. Lett. A, vol. 379, no. 36, pp. 1975–1978, 2015. https://doi.org/10.1016/j.physleta.2015.06.061.Suche in Google Scholar

[17] W. X. Ma, Z. Qin, and X. Li, “Lump solutions to dimensionally reduced p -gKP and p -gBKP equations,” Nonlinear Dynam., vol. 84, no. 2, pp. 923–931, 2016. https://doi.org/10.1007/s11071-015-2539-6.Suche in Google Scholar

[18] H.-C. Ma and A.-P. Deng, “Lump solution of (2+1)-dimensional Boussinesq equation,” Commun. Theor. Phys., vol. 65, no. 5, pp. 546–552, 2016. https://doi.org/10.1088/0253-6102/65/5/546.Suche in Google Scholar

[19] M. S. Osman, D. Lu, M. M. A. Khater, and R. A. M. Attia, “Complex wave structures for abundant solutions related to the complex Ginzburg-Landau model,” Optik (Stuttg.), vol. 192, p. 162927, 2019. https://doi.org/10.1016/j.ijleo.2019.06.027.Suche in Google Scholar

[20] S. F. Tian, “Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method,” J. Differ. Equ., vol. 262, pp. 506–558, 2017. https://doi.org/10.1016/j.jde.2016.09.033.Suche in Google Scholar

[21] S. F. Tian, “The mixed coupled nonlinear Schrödinger equation on the half-line via the Fokas method,” Proc. Math. Phys. Eng. Sci., vol. 472, p. 20160588, 2016. https://doi.org/10.1098/rspa.2016.0588.Suche in Google Scholar PubMed PubMed Central

[22] S. F. Tian and T. T. Zhang, “Long-time asymptotic behavior for the Gerdjikov-Ivanov type of derivative nonlinear Schrödinger equation with time-periodic boundary condition,” Proc. Am. Math. Soc., vol. 146, p. 1, 2017. https://doi.org/10.1090/proc/13917.Suche in Google Scholar

[23] W. Q. Peng, S. F. Tian, and T. T. Zhang, “Dynamics of breather waves and higher-order rogue waves in a coupled nonlinear Schrödinger equation,” Europhys. Lett., vol. 123, p. 50005, 2018. https://doi.org/10.1209/0295-5075/123/50005.Suche in Google Scholar

[24] Z. Z. Lan, “Multi-soliton solutions for a (2 + 1)-dimensional variable-coefficient nonlinear Schrödinger equation,” Appl. Math. Lett., vol. 86, pp. 243–248, 2018. https://doi.org/10.1016/j.aml.2018.05.014.Suche in Google Scholar

[25] X. B. Wang, T. T. Zhang, and M. J. Dong, “Dynamics of the breathers and rogue waves in the higher-order nonlinear Schrödinger equation,” Appl. Math. Lett., vol. 86, pp. 298–304, 2018. https://doi.org/10.1016/j.aml.2018.07.012.Suche in Google Scholar

[26] L. L. Feng and T. T. Zhang, “Breather wave rogue wave and solitary wave solutions of a coupled nonlinear Schrödinger equation,” Appl. Math. Lett., vol. 78, pp. 133–140, 2018. https://doi.org/10.1016/j.aml.2017.11.011.Suche in Google Scholar

[27] N. Raza and A. Javid, “Optical dark and dark-singular soliton solutions of (1+2)-dimensional chiral nonlinear Schrödinger’s equation,” Waves Random Complex Media, vol. 29, no. 3, pp. 496–508, 2019. https://doi.org/10.1080/17455030.2018.1451009.Suche in Google Scholar

[28] H. M. Baskonus, T. A. Sulaiman, H. Bulut, and T. Aktrk, “Investigations of dark, bright, combined dark-bright optical and other soliton solutions in the complex cubic nonlinear Schrodinger equation with delta -potential,” Superlattice. Microst., vol. 115, pp. 19–29, 2018. https://doi.org/10.1016/j.spmi.2018.01.008.Suche in Google Scholar

[29] H. Bulut, T. A. Sulaiman, and H. M. Baskonus, “Optical solitons to the resonant nonlinear Schrodinger equation with both spatio-temporal and inter-modal dispersions under Kerr law nonlinearity,” Optik, vol. 163, pp. 49–55, 2018. https://doi.org/10.1016/j.ijleo.2018.02.081.Suche in Google Scholar

[30] W. Gao, H. F. Ismael, A. M. Husien, H. Bulut, and H. M. Baskonus, “Optical soliton solutions of the nonlinear Schrodinger and resonant nonlinear Schrodinger equation with parabolic law,” Appl. Sci., vol. 10, no. 1, pp. 1–20, 2020.10.3390/app10010219Suche in Google Scholar

[31] L. Wang, Y. T. Gao, and Z. Y. Sun, “Solitonic interactions, Darboux transformation and double Wronskian solutions for a variable-coefficient derivative nonlinear Schrodinger equation in the inhomogeneous plasmas,” Nonlinear Dynam., vol. 67, pp. 713–722, 2012. https://doi.org/10.1007/s11071-011-0021-7.Suche in Google Scholar

[32] Z. Z Lan, B. Gao, and M. J. Du, “Bilinear forms and dark soliton behaviors for a higher-order variable-coefficient nonlinear Schrodinger equation in an inhomogeneous alpha helical protein,” Waves Random Complex Media, vol. 29, pp. 63–76, 2019. https://doi.org/10.1080/17455030.2017.1409914.Suche in Google Scholar

[33] J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, “Stable soliton-like propagation in dispersion managed systems with net anomalous, zero and normal dispersion,” Electron. Lett., vol. 33, p. 1726, 1997. https://doi.org/10.1049/el:19971128.10.1049/el:19971128Suche in Google Scholar

[34] M. S. Osman, An Extended Unified Method to Exact Solutions of Evolution Equations with Variable Coefficients and Applications, Giza, Egypt, Cairo University, 2014.Suche in Google Scholar

[35] X. Y. Gao, Y. J. Guo, and W. R. Shan, “Shallow water in an open sea or a wide channel: auto- and non-auto-Backlund transformations with solitons for a generalized (2+1)-dimensional dispersive long-wave system,” Chaos, Solit. Fractals, vol. 138, p. 109950, 2020. https://doi.org/10.1016/j.chaos.2020.109950.Suche in Google Scholar

[36] X. Y. Gao, Y. J. Guo, and W. R. Shan, “Water-wave symbolic computation for the Earth, Enceladus and Titan: the higher-order Boussinesq-Burgers system, auto- and non-auto-Backlund transformations,” Appl. Math. Lett., vol. 104, p. 106170, 2020. https://doi.org/10.1016/j.aml.2019.106170.Suche in Google Scholar

[37] C. R. Zhang, B. Tian, Q. X. Qu, L. Liu, and H. Y. Tian, “Vector bright solitons and their interactions of the couple Fokas-Lenells system in a birefringent optical fiber,” Z. Angew. Math. Phys., vol. 71, p. 18, 2020. https://doi.org/10.1007/s00033-019-1225-9.Suche in Google Scholar

[38] X. X. Du, B. Tian, Q. X. Qu, Y. Q. Yuan, and X. H. Zhao, “Lie group analysis, solitons, self-adjointness and conservation laws of the modified Zakharov-Kuznetsov equation in an electron-positron-ion magnetoplasma,” Chaos, Solit. Fractals, vol. 134, p. 109709, 2020. https://doi.org/10.1016/j.chaos.2020.109709.Suche in Google Scholar

[39] S. S. Chen, B. Tian, J. Chai, X. Y. Wu, and Z. Du, “Lax pair, binary Darboux transformations and dark-soliton interaction of a fifth-order defocusing nonlinear Schrodinger equation for the attosecond pulses in the optical fiber communication,” Waves Random Complex Media, vol. 30, pp. 389–402, 2020. https://doi.org/10.1080/17455030.2018.1516053.Suche in Google Scholar

[40] M. Wang, B. Tian, Y. Sun, and Z. Zhang, “Lump, mixed lump-stripe and rogue wave-stripe solutions of a (3+1)-dimensional nonlinear wave equation for a liquid with gas bubbles,” Comput. Math. Appl., vol. 79, pp. 576–587, 2020. https://doi.org/10.1016/j.camwa.2019.07.006.Suche in Google Scholar

[41] X. Y. Gao, Y. J. Guo, and W. R. Shan, “Cosmic dusty plasmas via a (3+1)-dimensional generalized variable-coefficient Kadomtsev-Petviashvili-Burgers-type equation: auto-Backlund transformations, solitons and similarity reductions plus observational/experimental supports,” Waves Random Complex Media, 2021, pp. 1–21, in press. https://doi.org/10.1080/17455030.2021.1942308.Suche in Google Scholar

[42] X. Y. Gao, Y. J. Guo, and W. R. Shan, “Hetero-Backlund transformation and similarity reduction of an extended (2+1)-dimensional coupled Burgers system in fluid mechanics,” Phys. Lett., vol. 384, p. 126788, 2020. https://doi.org/10.1016/j.physleta.2020.126788.Suche in Google Scholar

[43] X. Y. Gao, Y. J. Guo, and W. R. Shan, “Viewing the Solar System via a variable-coefficient nonlinear dispersive-wave system,” Acta Mech., vol. 231, pp. 4415–4420, 2020. https://doi.org/10.1007/s00707-020-02747-y.Suche in Google Scholar

[44] Y. Zheng, L. Yang, and F. Sauji, “The incomplete global GMERR algorithm for solving Sylvester equation,” Appl. Math. Nonlin. Sci., vol. 6, pp. 1–6, 2021. https://doi.org/10.2478/amns.2021.1.00005.Suche in Google Scholar

[45] M. H. Rahaman, M. K. Hasan, M. A. Ali, and M. Aslam, “Implicit methods for numerical solution of singular initial value problems,” Appl. Math. Nonlin. Sci., vol. 6, no. 1, pp. 1–8, 2021. https://doi.org/10.2478/amns.2020.2.00001.Suche in Google Scholar

[46] T. A. Sulaiman, H. Bulut, and H. M. Baskonus, “On the exact solutions to some system of complex nonlinear models problems,” Appl. Math. Nonlin. Sci, vol. 6, no. 1, pp. 29–42, 2021. https://doi.org/10.2478/amns.2020.2.00007.Suche in Google Scholar

[47] X. Yu and S. Kong, “Travelling wave solutions to the proximate equations for LWSW,” Appl. Math. Nonlin. Sci., vol. 6, no. 1, pp. 335–346, 2021. https://doi.org/10.2478/amns.2021.2.00008.Suche in Google Scholar

[48] P. D. Sanakal and E. Yasar, “Optical soliton solutions to a (2+1) dimensional Schrödinger equation using a couple of integration architectures,” Appl. Math. Nonlin. Sci., vol. 6, no. 1, pp. 381–396, 2021.10.2478/amns.2020.2.00010Suche in Google Scholar

[49] H. Rezazadeh, A. Korkmaz, A. E. Achab, W. Adel, and A. Bekir, “New travelling wave solution-based new Riccati equation for solving KdV and modified KdV equations,” Appl. Math. Nonlin. Sci., vol. 6, no. 1, pp. 447–458, 2021.10.2478/amns.2020.2.00034Suche in Google Scholar

[50] M. Onal and A. Esen, “A Crank-Nicolson approximation for the time fractional Burgers equation,” Appl. Math. Nonlin. Sci., vol. 5, no. 2, pp. 177–184, 2020. https://doi.org/10.2478/amns.2020.2.00023.Suche in Google Scholar

[51] J. W. Yang, Y. T. Gao, and C. Q. Su, “Solitons and quasi-periodic behaviors in an inhomogeneous optical fiber,” Commun. Nonlinear Sci. Numer. Simulat., vol. 42, pp. 477–490, 2016.10.1016/j.cnsns.2016.05.013Suche in Google Scholar

[52] Q. M. Huang, Y. T. Gao, and L. Hu, “Bilinear forms, modulational instability and dark solitons for a fifth-order variable-coefficient nonlinear Schrodinger equation in an inhomogeneous optical fiber,” Appl. Math. Comput., vol. 352, pp. 270–278, 2019. https://doi.org/10.1016/j.amc.2019.01.027.Suche in Google Scholar

[53] S. Liu, Q. Zhou, A. Biswas, A. K. Alzahrani, and W. Liu, “Interactions among solitons for a fifth-order variable coefficient nonlinear Schrodinger equation,” Nonlinear Dynam., vol. 100, pp. 2797–2805, 2020. https://doi.org/10.1007/s11071-020-05657-9.Suche in Google Scholar

[54] S. Loomba, R. Gupta, C. N. Kumar, and D. Milovic, “Optical rogons for inhomogeneous nonlinear Schrodinger equation with inter modal dispersion,” Appl. Math. Comput., vol. 225, pp. 318–325, 2013. https://doi.org/10.1016/j.amc.2013.09.043.Suche in Google Scholar

[55] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature, vol. 450, no. 7172, pp. 1054–1057, 2007. https://doi.org/10.1038/nature06402.Suche in Google Scholar PubMed

[56] G. P. Agrawal, Nonlinear Fiber Optics, 5th ed., New York, Academic Press, 2013.10.1016/B978-0-12-397023-7.00011-5Suche in Google Scholar

[57] N. Raza and A. Javid, “Modulation instability and optical solitons of Radhakrishnan-Kundu-Lakshmanan model,” J. Appl. Anal. Comput., vol. 10, no. 4, pp. 1375–1395, 2020. https://doi.org/10.11948/20190203.Suche in Google Scholar

Received: 2021-04-16
Revised: 2021-09-29
Accepted: 2021-11-04
Published Online: 2021-11-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Original Research Articles
  3. Numerical solutions for variable-order fractional Gross–Pitaevskii equation with two spectral collocation approaches
  4. Threshold dynamics of an HIV-1 model with both virus-to-cell and cell-to-cell transmissions, immune responses, and three delays
  5. Numerical scheme and analytical solutions to the stochastic nonlinear advection diffusion dynamical model
  6. On modeling column crystallizers and a Hermite predictor–corrector scheme for a system of integro-differential equations
  7. On a discrete fractional stochastic Grönwall inequality and its application in the numerical analysis of stochastic FDEs involving a martingale
  8. A new self adaptive Tseng’s extragradient method with double-projection for solving pseudomonotone variational inequality problems in Hilbert spaces
  9. Solitary waves of the RLW equation via least squares method
  10. Optical solitons and stability regions of the higher order nonlinear Schrödinger’s equation in an inhomogeneous fiber
  11. Weighted pseudo asymptotically Bloch periodic solutions to nonlocal Cauchy problems of integrodifferential equations in Banach spaces
  12. Modified inertial subgradient extragradient method for equilibrium problems
  13. Propagation of dark-bright soliton and kink wave solutions of fluidized granular matter model arising in industrial applications
  14. Existence and uniqueness of positive solutions for fractional relaxation equation in terms of ψ-Caputo fractional derivative
  15. Investigation of nonlinear fractional delay differential equation via singular fractional operator
  16. Travelling peakon and solitary wave solutions of modified Fornberg–Whitham equations with nonhomogeneous boundary conditions
  17. The (3 + 1)-dimensional Wazwaz–KdV equations: the conservation laws and exact solutions
  18. Stability and ψ-algebraic decay of the solution to ψ-fractional differential system
  19. Some new characterizations of a space curve due to a modified frame N , C , W in Euclidean 3-space
  20. Numerical simulation of particulate matter propagation in an indoor environment with various types of heating
  21. Inertial accelerated algorithms for solving split feasibility with multiple output sets in Hilbert spaces
  22. Stability analysis and abundant closed-form wave solutions of the Date–Jimbo–Kashiwara–Miwa and combined sinh–cosh-Gordon equations arising in fluid mechanics
  23. Contrasting effects of prey refuge on biodiversity of species
Heruntergeladen am 19.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2021-0165/html
Button zum nach oben scrollen