Startseite Delay-dependent robust stability analysis of uncertain fractional-order neutral systems with distributed delays and nonlinear perturbations subject to input saturation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Delay-dependent robust stability analysis of uncertain fractional-order neutral systems with distributed delays and nonlinear perturbations subject to input saturation

  • Zahra Sadat Aghayan ORCID logo , Alireza Alfi ORCID logo EMAIL logo und J. A. Tenreiro Machado ORCID logo
Veröffentlicht/Copyright: 24. August 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this article, we address the delay-dependent robust stability of uncertain fractional order neutral-type (FONT) systems with distributed delays, nonlinear perturbations, and input saturation. With the aid of the Lyapunov–Krasovskii functional, criteria on asymptotic robust stability of FONT, expressed in terms of linear matrix inequalities, are constructed to compute the state-feedback controller gains. The controller gains are determined subject to maximizing the domain of attraction via the cone complementarity linearization algorithm. The theoretical results are validated using numerical simulations.


Corresponding author: Alireza Alfi, Faculty of Electrical Engineering, Shahrood University of Technology, Shahrood 36199-95161, Iran, E-mail:

  1. Author contribution: Zahra Sadat Aghayan: Conceptualization, Methodology, Software. Alireza Alfi: Conceptualization, Writing - review & editing, Investigation. J.A. Tenreiro Machado: Writing - review & editing, Investigation.

  2. Research funding: There is no funding.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] Q. Wu, Q. Song, B. Hu, Z. Zhao, Y. Liu, and F. E. Alsaadi, “Robust stability of uncertain fractional order singular systems with neutral and time-varying delays,” Neurocomputing, vol. 411, no. 11, pp. 145–152, 2020. https://doi.org/10.1016/j.neucom.2020.03.015.Suche in Google Scholar

[2] S. Arik, “New criteria for stability of neutral-type neural networks with multiple time delays,” IEEE Trans. Neural Network Learn. Syst., vol. 31, no. 5, pp. 1504–1513, 2019. https://doi.org/10.1109/TNNLS.2019.2920672.Suche in Google Scholar PubMed

[3] T. Wang, T. Li, G. Zhang, and S. Fei, “Further triple integral approach to mixed-delay-dependent stability of time-delay neutral systems,” ISA (Instrum. Soc. Am.) Trans., vol. 70, pp. 116–124, 2017. https://doi.org/10.1016/j.isatra.2017.05.010.Suche in Google Scholar PubMed

[4] J. Grzybowski, E. Macau, and T. Yoneyama, “The Lyapunov–Krasovskii theorem and a sufficient criterion for local stability of isochronal synchronization in networks of delay-coupled oscillators,” Phys. Nonlinear Phenom., vol. 346, pp. 28–36, 2017. https://doi.org/10.1016/j.physd.2017.01.005.Suche in Google Scholar

[5] A. Elahi and A. Alfi, “Stochastic H∞ finite-time control of networked cascade control systems under limited channels, network delays and packet dropouts,” ISA (Instrum. Soc. Am.) Trans., vol. 97, pp. 352–364, 2020. https://doi.org/10.1016/j.isatra.2019.07.020.Suche in Google Scholar PubMed

[6] K. Cui, J. Lu, C. Li, Z. He, and Y.-M. Chu, “Almost sure synchronization criteria of neutral-type neural networks with Lévy noise and sampled-data loss via event-triggered control,” Neurocomputing, vol. 325, pp. 113–120, 2019. https://doi.org/10.1016/j.neucom.2018.10.013.Suche in Google Scholar

[7] Q.-L. Han, “Stability analysis for a partial element equivalent circuit (PEEC) model of neutral type,” Int. J. Circ. Theor. Appl., vol. 33, no. 4, pp. 321–332, 2005. https://doi.org/10.1002/cta.323.Suche in Google Scholar

[8] M. Barbarossa, K. Hadeler, and C. Kuttler, “State-dependent neutral delay equations from population dynamics,” J. Math. Biol., vol. 69, no. 4, pp. 1027–1056, 2014. https://doi.org/10.1007/s00285-014-0821-8.Suche in Google Scholar PubMed

[9] F. Du and J.-G. Lu, “Finite-time stability of neutral fractional order time delay systems with Lipschitz nonlinearities,” Appl. Math. Comput., vol. 375, p. 125079, 2020. https://doi.org/10.1016/j.amc.2020.125079.Suche in Google Scholar

[10] W. Chen, S. Xu, Y. Li, and Z. Zhang, “Stability analysis of neutral systems with mixed interval time-varying delays and nonlinear disturbances,” J. Franklin Inst., vol. 357, no. 6, pp. 3721–3740, 2020. https://doi.org/10.1016/j.jfranklin.2020.02.038.Suche in Google Scholar

[11] Y. He, M. Wu, J.-H. She, and G.-P. Liu, “Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays,” Syst. Contr. Lett., vol. 51, no. 1, pp. 57–65, 2004. https://doi.org/10.1016/s0167-6911(03)00207-x.Suche in Google Scholar

[12] F. Zheng and P. M. Frank, “Robust control of uncertain distributed delay systems with application to the stabilization of combustion in rocket motor chambers,” Automatica, vol. 38, no. 3, pp. 487–497, 2002. https://doi.org/10.1016/s0005-1098(01)00232-1.Suche in Google Scholar

[13] E. Kaslik and M. Neamţu, “Dynamics of a tourism sustainability model with distributed delay,” Chaos, Solit. Fractals, vol. 133, p. 109610, 2020. https://doi.org/10.1016/j.chaos.2020.109610.Suche in Google Scholar

[14] B. Niu and Y. Guo, “Bifurcation analysis on the globally coupled Kuramoto oscillators with distributed time delays,” Phys. Nonlinear Phenom., vol. 266, pp. 23–33, 2014. https://doi.org/10.1016/j.physd.2013.10.003.Suche in Google Scholar

[15] M. Sardar, S. Biswas, and S. Khajanchi, “The impact of distributed time delay in a tumor-immune interaction system,” Chaos, Solit. Fractals, vol. 142, p. 110483, 2021. https://doi.org/10.1016/j.chaos.2020.110483.Suche in Google Scholar

[16] R. Roopnarain and S. R. Choudhury, “Amplitude death, oscillation death, and periodic regimes in dynamically coupled Landau–Stuart oscillators with and without distributed delay,” Math. Comput. Simulat., vol. 187, pp. 30–50, 2021. https://doi.org/10.1016/j.matcom.2021.02.006.Suche in Google Scholar

[17] Y. Chen, W. Qian, and S. Fei, “Improved robust stability conditions for uncertain neutral systems with discrete and distributed delays,” J. Franklin Inst., vol. 352, no. 7, pp. 2634–2645, 2015. https://doi.org/10.1016/j.jfranklin.2015.03.040.Suche in Google Scholar

[18] H. Zhang, R. Ye, S. Liu, J. Cao, A. Alsaedi, and X. Li, “LMI-based approach to stability analysis for fractional-order neural networks with discrete and distributed delays,” Int. J. Syst. Sci., vol. 49, no. 3, pp. 537–545, 2018. https://doi.org/10.1080/00207721.2017.1412534.Suche in Google Scholar

[19] P.-L. Liu, “Improved delay-dependent stability of neutral type neural networks with distributed delays,” ISA (Instrum. Soc. Am.) Trans., vol. 52, no. 6, pp. 717–724, 2013. https://doi.org/10.1016/j.isatra.2013.06.012.Suche in Google Scholar PubMed

[20] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204, Amsterdam, Elsevier, 2006.10.1016/S0304-0208(06)80001-0Suche in Google Scholar

[21] D. Baleanu, S. S. Sajjadi, A. Jajarmi, and J. H. Asad, “New features of the fractional Euler–Lagrange equations for a physical system within non-singular derivative operator,” Eur. Phys. J. Plus, vol. 134, no. 4, p. 181, 2019. https://doi.org/10.1140/epjp/i2019-12561-x.Suche in Google Scholar

[22] H.-Y. Yang, Y. Yang, F. Han, M. Zhao, and L. Guo, “Containment control of heterogeneous fractional-order multi-agent systems,” J. Franklin Inst., vol. 356, no. 2, pp. 752–765, 2019. https://doi.org/10.1016/j.jfranklin.2017.09.034.Suche in Google Scholar

[23] B. Xiao, J. Luo, X. Bi, W. Li, and B. Chen, “Fractional discrete Tchebyshev moments and their applications in image encryption and watermarking,” Inf. Sci., vol. 516, pp. 545–559, 2020. https://doi.org/10.1016/j.ins.2019.12.044.Suche in Google Scholar

[24] C. Zou, L. Zhang, X. Hu, Z. Wang, T. Wik, and M. Pecht, “A review of fractional-order techniques applied to lithium-ion batteries, lead-acid batteries, and supercapacitors,” J. Power Sources, vol. 390, pp. 286–296, 2018. https://doi.org/10.1016/j.jpowsour.2018.04.033.Suche in Google Scholar

[25] K. M. Owolabi, “High-dimensional spatial patterns in fractional reaction–diffusion system arising in biology,” Chaos, Solit. Fractals, vol. 134, p. 109723, 2020. https://doi.org/10.1016/j.chaos.2020.109723.Suche in Google Scholar

[26] N. H. Sau, D. T. Hong, B. V. Huyen, Huong, and M. V. Thuan, “Delay-dependent and order-dependent control for fractional-order neural networks with time-varying delay,” Differ. Equ. Dyn. Syst., pp. 1–15, 2021. https://doi.org/10.1007/s12591-020-00559-z.Suche in Google Scholar

[27] V. Phat, P. Niamsup, and M. V. Thuan, “A new design method for observer-based control of nonlinear fractional-order systems with time-variable delay,” Eur. J. Contr., vol. 56, pp. 124–131, 2020. https://doi.org/10.1016/j.ejcon.2020.02.005.Suche in Google Scholar

[28] S. M. A. Pahnehkolaei, A. Alfi, and J. T. Machado, “Uniform stability of fractional order leaky integrator echo state neural network with multiple time delays,” Inf. Sci., vol. 418, pp. 703–716, 2017. https://doi.org/10.1016/j.ins.2017.08.046.Suche in Google Scholar

[29] N. H. Sau, M. V. Thuan, and N. T. T. Huyen, “Passivity analysis of fractional-order neural networks with time-varying delay based on LMI approach,” Circ. Syst. Signal Process., vol. 39, pp. 5906–5925, 2020. https://doi.org/10.1007/s00034-020-01450-6.Suche in Google Scholar

[30] R. Rakkiyappan, G. Velmurugan, and J. Cao, “Finite-time stability analysis of fractional-order complex-valued memristor-based neural networks with time delays,” Nonlinear Dynam., vol. 78, no. 4, pp. 2823–2836, 2014. https://doi.org/10.1007/s11071-014-1628-2.Suche in Google Scholar

[31] M. V. Thuan, T. N. Binh, and D. C. Huong, “Finite-time guaranteed cost control of caputo fractional-order neural networks,” Asian J. Contr., vol. 22, no. 2, pp. 696–705, 2020. https://doi.org/10.1002/asjc.1927.Suche in Google Scholar

[32] J. Xiao, J. Cao, J. Cheng, S. Zhong, and S. Wen, “Novel methods to finite-time Mittag–Leffler synchronization problem of fractional-order quaternion-valued neural networks,” Inf. Sci., vol. 526, pp. 211–244, 2020.10.1016/j.ins.2020.03.101Suche in Google Scholar

[33] P. Li, L. Chen, R. Wu, J. T. Machado, A. M. Lopes, and L. Yuan, “Robust asymptotic stability of interval fractional-order nonlinear systems with time-delay,” J. Franklin Inst., vol. 355, no. 15, pp. 7749–7763, 2018. https://doi.org/10.1016/j.jfranklin.2018.08.017.Suche in Google Scholar

[34] D. C. Huong and M. V. Thuan, “Mixed H∞ and passive control for fractional nonlinear systems via LMI approach,” Acta Appl. Math., vol. 170, no. 1, pp. 37–52, 2020. https://doi.org/10.1007/s10440-020-00323-z.Suche in Google Scholar

[35] M. V. Thuan, N. H. Sau, and N. T. T. Huyen, “Finite-time H∞ control of uncertain fractional-order neural networks,” Comput. Appl. Math., vol. 39, no. 2, pp. 1–19, 2020. https://doi.org/10.1007/s40314-020-1069-0.Suche in Google Scholar

[36] K. Liu, J. Wang, Y. Zhou, and D. O’Regan, “Hyers–Ulam stability and existence of solutions for fractional differential equations with Mittag–Leffler kernel,” Chaos, Solit. Fractals, vol. 132, p. 109534, 2020. https://doi.org/10.1016/j.chaos.2019.109534.Suche in Google Scholar

[37] M. V. Thuan, N. H. Sau, and N. T. T. Huyen, “New results on robust finite-time passivity for fractional-order neural networks with uncertainties,” Comput. Appl. Math., vol. 39, no. 59, pp. 1–18, 2020. https://doi.org/10.1007/s40314-020-1069-0.Suche in Google Scholar

[38] J. Cheng, H. Zhu, S. Zhong, and G. Li, “Novel delay-dependent robust stability criteria for neutral systems with mixed time-varying delays and nonlinear perturbations,” Appl. Math. Comput., vol. 219, no. 14, pp. 7741–7753, 2013. https://doi.org/10.1016/j.amc.2013.01.062.Suche in Google Scholar

[39] X. Zhang and Y. Chen, “Admissibility and robust stabilization of continuous linear singular fractional order systems with the fractional order α: the 0 < α < 1 case,” ISA (Instrum. Soc. Am.) Trans., vol. 82, pp. 42–50, 2018. https://doi.org/10.1016/j.isatra.2017.03.008.Suche in Google Scholar PubMed

[40] P. Badri and M. Sojoodi, “Robust stabilisation of fractional-order interval systems via dynamic output feedback: an LMI approach,” Int. J. Syst. Sci., vol. 50, no. 9, pp. 1718–1730, 2019. https://doi.org/10.1080/00207721.2019.1622817.Suche in Google Scholar

[41] R. Mohsenipour and M. F. Jegarkandi, “Robust stability analysis of fractional-order interval systems with multiple time delays,” Int. J. Robust Nonlinear Control, vol. 29, no. 6, pp. 1823–1839, 2019. https://doi.org/10.1002/rnc.4461.Suche in Google Scholar

[42] M. V. Thuan, D. C. Huong, and D. T. Hong, “New results on robust finite-time passivity for fractional-order neural networks with uncertainties,” Neural Process. Lett., vol. 50, no. 2, pp. 1065–1078, 2019. https://doi.org/10.1007/s11063-018-9902-9.Suche in Google Scholar

[43] M. V. Thuan and D. C. Huong, “Robust guaranteed cost control for time-delay fractional-order neural networks systems,” Optim. Contr. Appl. Methods, vol. 40, no. 4, pp. 613–625, 2019. https://doi.org/10.1002/oca.2497.Suche in Google Scholar

[44] S. M. A. Pahnehkolaei, A. Alfi, and J. T. Machado, “Delay-dependent stability analysis of the quad vector field fractional order quaternion-valued memristive uncertain neutral type leaky integrator echo state neural networks,” Neural Network., vol. 117, pp. 307–327, 2019. https://doi.org/10.1016/j.neunet.2019.05.015.Suche in Google Scholar PubMed

[45] W. Chartbupapan, O. Bagdasar, and K. Mukdasai, “A novel delay-dependent asymptotic stability conditions for differential and Riemann–Liouville fractional differential neutral systems with constant delays and nonlinear perturbation,” Mathematics, vol. 8, no. 1, p. 82, 2020. https://doi.org/10.3390/math8010082.Suche in Google Scholar

[46] M. Iqbal, M. Rehan, K.-S. Hong, A. Khaliq, and S. ur Rehman, “Sector-condition-based results for adaptive control and synchronization of chaotic systems under input saturation,” Chaos, Solit. Fractals, vol. 77, pp. 158–169, 2015. https://doi.org/10.1016/j.chaos.2015.05.021.Suche in Google Scholar

[47] H. Li, C. Li, D. Ouyang, and S. K. Nguang, “Impulsive stabilization of nonlinear time-delay system with input saturation via delay-dependent polytopic approach,” IEEE Trans. Systems, Man Cybernetics: Syst., pp. 1–12, 2020. https://doi.org/10.1109/tsmc.2019.2963398.Suche in Google Scholar

[48] X. Yang, B. Zhou, F. Mazenc, and J. Lam, “Global stabilization of discrete-time linear systems subject to input saturation and time delay,” IEEE Trans. Automatic Control, vol. 66, no. 3, pp. 1345–1352, 2020.10.1109/TAC.2020.2989791Suche in Google Scholar

[49] E. S. A. Shahri, A. Alfi, and J. T. Machado, “Stabilization of fractional-order systems subject to saturation element using fractional dynamic output feedback sliding mode control,” J. Comput. Nonlinear Dynam., vol. 12, no. 3, p. 031014, 2017. https://doi.org/10.1115/1.4035196.Suche in Google Scholar

[50] E. S. A. Shahri, A. Alfi, and J. T. Machado, “Robust stability and stabilization of uncertain fractional order systems subject to input saturation,” J. Vib. Contr., vol. 24, no. 16, pp. 3676–3683, 2018. https://doi.org/10.1177/1077546317708927.Suche in Google Scholar

[51] E. S. A. Shahri, A. Alfi, and J. T. Machado, “An extension of estimation of domain of attraction for fractional order linear system subject to saturation control,” Appl. Math. Lett., vol. 47, pp. 26–34, 2015. https://doi.org/10.1016/j.aml.2015.02.020.Suche in Google Scholar

[52] E. S. A. Shahri, A. Alfi, and J. T. Machado, “Lyapunov method for the stability analysis of uncertain fractional-order systems under input saturation,” Appl. Math. Model., vol. 81, pp. 663–672, 2020. https://doi.org/10.1016/j.apm.2020.01.013.Suche in Google Scholar

[53] E. S. A. Shahri, A. Alfi, and J. T. Machado, “Stability analysis of a class of nonlinear fractional-order systems under control input saturation,” Int. J. Robust Nonlinear Control, vol. 28, no. 7, pp. 2887–2905, 2018. https://doi.org/10.1002/rnc.4055.Suche in Google Scholar

[54] S. Song, J. H. Park, B. Zhang, and X. Song, “Adaptive hybrid fuzzy output feedback control for fractional-order nonlinear systems with time-varying delays and input saturation,” Appl. Math. Comput., vol. 364, p. 124662, 2020. https://doi.org/10.1016/j.amc.2019.124662.Suche in Google Scholar

[55] Z. Chen, J. Cheng, J. Tan, and Z. Cao, “Decentralized finite-time control for linear interconnected fractional-order systems with input saturation,” J. Franklin Inst., vol. 357, pp. 6137–6153, 2020. https://doi.org/10.1016/j.jfranklin.2020.04.018.Suche in Google Scholar

[56] Y.-H. Lim, K.-K. Oh, and H.-S. Ahn, “Stability and stabilization of fractional-order linear systems subject to input saturation,” IEEE Trans. Automat. Contr., vol. 58, no. 4, pp. 1062–1067, 2012.10.1109/TAC.2012.2218064Suche in Google Scholar

[57] D. Valério, J. J. Trujillo, M. Rivero, J. T. Machado, and D. Baleanu, “Fractional calculus: a survey of useful formulas,” Eur. Phys. J. Spec. Top., vol. 222, no. 8, pp. 1827–1846, 2013. https://doi.org/10.1140/epjst/e2013-01967-y.Suche in Google Scholar

[58] E. S. A. Shahri and S. Balochian, “Analysis of fractional-order linear systems with saturation using Lyapunov second method and convex optimization,” Int. J. Autom. Comput., vol. 12, no. 4, pp. 440–447, 2015. https://doi.org/10.1007/s11633-014-0856-8.Suche in Google Scholar

[59] I. R. Petersen, “A stabilization algorithm for a class of uncertain linear systems,” Syst. Contr. Lett., vol. 8, no. 4, pp. 351–357, 1987. https://doi.org/10.1016/0167-6911(87)90102-2.Suche in Google Scholar

[60] K. Gu, J. Chen, and V. L. Kharitonov, Stability of Time-Delay Systems, Boston, Springer Science & Business Media, 2003.10.1007/978-1-4612-0039-0Suche in Google Scholar

[61] S. Liu, W. Jiang, X. Li, and X.-F. Zhou, “Lyapunov stability analysis of fractional nonlinear systems,” Appl. Math. Lett., vol. 51, pp. 13–19, 2016. https://doi.org/10.1016/j.aml.2015.06.018.Suche in Google Scholar

[62] F. Zhang, The Schur Complement and its Applications, vol. 4, United States of America, Springer Science & Business Media, 2006.Suche in Google Scholar

[63] X. Liao, G. Chen, and E. N. Sanchez, “LMI-based approach for asymptotically stability analysis of delayed neural networks,” IEEE Trans. Circuits Syst. I, vol. 49, no. 7, pp. 1033–1039, 2002. https://doi.org/10.1109/tcsi.2002.800842.Suche in Google Scholar

[64] A. Elahi and A. Alfi, “Finite-time H∞ stability analysis of uncertain network-based control systems under random packet dropout and varying network delay,” Nonlinear Dynam., vol. 91, pp. 713–731, 2017. https://doi.org/10.1007/s11071-017-3905-3.Suche in Google Scholar

[65] K. Diethelm and N. J. Ford, “Analysis of fractional differential equations,” J. Math. Anal. Appl., vol. 265, no. 2, pp. 229–248, 2002. https://doi.org/10.1006/jmaa.2000.7194.Suche in Google Scholar

[66] S. Bhalekar and V. Daftardar-Gejji, “A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order,” J. Fractional Calculus Appl., vol. 1, no. 5, pp. 1–9, 2011.10.1155/2011/250763Suche in Google Scholar

Received: 2020-07-26
Revised: 2021-04-20
Accepted: 2021-07-20
Published Online: 2021-08-24
Published in Print: 2023-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Original Research Articles
  3. Modeling and assessment of the flow and air pollutants dispersion during chemical reactions from power plant activities
  4. Stochastic dynamics of dielectric elastomer balloon with viscoelasticity under pressure disturbance
  5. Unsteady MHD natural convection flow of a nanofluid inside an inclined square cavity containing a heated circular obstacle
  6. Fractional-order generalized Legendre wavelets and their applications to fractional Riccati differential equations
  7. Battery discharging model on fractal time sets
  8. Adaptive neural network control of second-order underactuated systems with prescribed performance constraints
  9. Optimal control for dengue eradication program under the media awareness effect
  10. Shifted Legendre spectral collocation technique for solving stochastic Volterra–Fredholm integral equations
  11. Modeling and simulations of a Zika virus as a mosquito-borne transmitted disease with environmental fluctuations
  12. Mathematical analysis of the impact of vaccination and poor sanitation on the dynamics of poliomyelitis
  13. Anti-sway method for reducing vibrations on a tower crane structure
  14. Stable soliton solutions to the time fractional evolution equations in mathematical physics via the new generalized G / G -expansion method
  15. Convergence analysis of online learning algorithm with two-stage step size
  16. An estimative (warning) model for recognition of pandemic nature of virus infections
  17. Interaction among a lump, periodic waves, and kink solutions to the KP-BBM equation
  18. Global exponential stability of periodic solution of delayed discontinuous Cohen–Grossberg neural networks and its applications
  19. An efficient class of fourth-order derivative-free method for multiple-roots
  20. Numerical modeling of thermal influence to pollutant dispersion and dynamics of particles motion with various sizes in idealized street canyon
  21. Construction of breather solutions and N-soliton for the higher order dimensional Caudrey–Dodd–Gibbon–Sawada–Kotera equation arising from wave patterns
  22. Delay-dependent robust stability analysis of uncertain fractional-order neutral systems with distributed delays and nonlinear perturbations subject to input saturation
  23. Construction of complexiton-type solutions using bilinear form of Hirota-type
  24. Inverse estimation of time-varying heat transfer coefficients for a hollow cylinder by using self-learning particle swarm optimization
  25. Infinite line of equilibriums in a novel fractional map with coexisting infinitely many attractors and initial offset boosting
  26. Lump solutions to a generalized nonlinear PDE with four fourth-order terms
  27. Quantum motion control for packaging machines
Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2020-0170/html
Button zum nach oben scrollen