Startseite Optimal control for dengue eradication program under the media awareness effect
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Optimal control for dengue eradication program under the media awareness effect

  • Dipo Aldila EMAIL logo
Veröffentlicht/Copyright: 2. Dezember 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this article, a mathematical model is proposed to assess the effects of media awareness on dengue eradication programs. First, the existence and local stability of equilibrium points are discussed using the concept of the basic reproduction number. Using the center-manifold theorem, it is shown that the proposed model always undergoes a forward bifurcation at the basic reproduction number equal to unity. It is observed that the high-intensity media awareness could reduce the size of the endemic equilibrium. Based on local sensitivity analysis, we identify the three most sensitive parameters, namely the natural death rate of mosquito (μ v ), infection rates (β h1, β v1), and hospitalization rate (η). Hence, control variables need to be introduced to increase/reduce these parameters. In this article, we use three different control variables, namely the media campaign, (u 1(t)), to reduce infection rates, additional hospitalization rate, (u 2(t)), and fumigation rate, (u 3(t)), to increase mosquitoes death rate. Pontryagin’s maximum principle is used to determine the optimal conditions. Some numerical simulations are performed to describe a possible scenario in the field. Cost effectiveness analysis is then conducted to determine the best strategy for the dengue eradication program. We conclude that a combination of media campaigns and fumigation is the most effective strategy to prevent a significant increase in the number of infected individuals.


Corresponding author: Dipo Aldila, Department of Mathematics, Universitas Indonesia, Depok 16424, Indonesia, E-mail:

Award Identifier / Grant number: NKB-2803/UN2.RST/HKP.05.00/2020

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was financially supported by Universitas Indonesia, under the PPI-Q2 research grant scheme 2021 (ID number: NKB-590/UN2.RST/HKP.05.00/2021).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Appendix A: Proof of Lemma 1

From dengue model in (2), since

d S d t S = 0 , I 0 , H 0 , R 0 , U 0 , V 0 = Λ h + δ R ,

we have that the rates are non-negative on the boundary planes of R + 6 . Hence, we have that all vector field are directed inward from the boundary. Using similar approach, we have that d I d t > 0 , d H d t > 0 , d R d t > 0 , d U d t > 0 , d V d t > 0 in the boundary planes of R + 6 . Hence, whenever the systems start with a non-negative initial conditions in R + 6 , all solutions of system (2) will be positive. Hence, the proof is completed.

Appendix B: Proof of Lemma 2

Summing up human population in system (2), we have

d N d t = d S d t + d I d t + d H d t + d R d t = Λ h μ h ( S + I + H + R ) = λ h μ h N .

Solving above equation yields

N ( t ) = N 0 e μ h t + Λ h μ h 1 e μ h t ,

where N 0 = S 0 + I 0 + H 0 + R 0. If N 0 < Λ h μ h , then d N d t > 0 which means that N(t) is increasing, and it tends to N ( t ) = Λ h μ h . On the other hand, if N 0 > Λ h μ h , then d N d t < 0 which means that N(t) is decreasing to Λ h μ h for t → ∞. Lastly, if N 0 = Λ h μ h , then d N d t = 0 which means that the total of population remain constant in time at N ( t ) = Λ h μ h . A similar approach can be used to prove M ( t ) Λ v μ v for t → ∞. Hence, the region Ω attracts all solution in R + 6 .

Appendix C: Proof of Theorem 1

The Jacobian matrix of system (2) at E 0 is given by

J 0 = μ h 0 0 δ 0 Λ h β h 1 μ h 0 η α 0 μ h 0 0 0 Λ h β h 1 μ h 0 η α 1 μ h 0 0 0 0 α 0 α 1 δ μ h 0 0 0 Λ v β v 1 μ v 0 0 μ v 0 0 Λ v β v 1 μ v 0 0 0 μ v .

We have four negative eigenvalues of J 0, λ 1 = −μ v , λ 2 = −μ v , λ 3 = −(α 1μ h ), λ 4 = −(μ h + δ), while the other two are taken from the root of the polynomial a 2 λ 2 + a 1 λ + a 0 = 0, where a 2μ h μ v , a 1μ h μ v (η + α 0μ h μ v ), and a 0 = μ h μ v 2 ( η + α o + μ h ) ( 1 R 0 ) . It is evident that the last two eigenvalues have negative real components if a 0 < 0 R 0 < 1 . Hence, E 0 is locally asymptotically stable if and only if R 0 < 1 .

Appendix D: The endemic equilibrium

The endemic equilibrium of dengue model in system (2) is given by

E 1 = S , I , H , R , U , V = S , I , H , R , U , V ,

where

S = μ v m + I I 2 ( β v 1 β v 2 ) + I m β v 1 + I μ v + m μ v η + α 0 + μ h Λ v I ( β v 1 β v 2 ) + m β v 1 I ( β h 1 β h 2 ) + m β h 1 , H = η I α 1 + μ h , R = I η α 1 + α 0 α 1 + α 0 μ h α 1 + μ h δ + μ h , U = Λ v m + I I 2 ( β v 1 β v 2 ) + I m β v 1 + I μ v + m μ v , V = I Λ v I β v 1 β v 2 + m β v 1 μ v I 2 β v 1 β v 2 + I m β v 1 + I μ v + m μ v .

Appendix E: Proof of Theorem 2

From the form of E 1, it is evident that S , H , R , U , V will be positive if I is positive. Therefore, E 1 exists if P 1(I) has a positive root, I. Since b 3 < 0, we have that lim I P 1 ( I ) = , and lim I P 1 ( I ) = . Let us assume that b 0 = 0 R 0 = 1 . In this case, we also assume that there are no positive roots of P 1(I), and that one of its roots is zero. Therefore, in the case that b 0 < 0 R 0 > 1 , P 1(I) will be shifted in y-positive direction, which will produce at least one positive root. Therefore, we have at least one dengue-endemic equilibrium when R 0 > 1 . For an illustration of the proof, please consult Figure 1. This completes the proof.

Appendix F: Proof of Theorem 3

For the sake of written simplification, let us assume the following:

S = x 1 , I = x 2 , H = x 3 , R = x 4 , U = x 5 , V = x 6 , d S d t = g 1 , d I d t = g 2 , d H d t = g 3 , d R d t = g 4 , d U d t = g 5 , d V d t = g 6 .

Hence, the Dengue model in system (2) now read as

(17) g 1 = Λ h β h 1 β h 2 x 2 + x 3 m + x 2 + x 3 x 1 x 6 μ h x 1 + δ x 4 , g 2 = β h 1 β h 2 x 2 + x 3 m + x 2 + x 3 x 1 x 6 α 0 x 2 η x 2 μ h x 2 , g 3 = η x 2 α 1 x 3 μ h x 3 , g 4 = α 0 x 2 + α 1 x 3 μ h x 4 δ x 4 , g 5 = Λ v β v 1 β v 2 x 2 + x 3 m + x 2 + x 3 x 5 x 2 μ v x 5 , g 6 = β v 1 β v 2 x 2 + x 3 m + x 2 + x 3 x 5 x 2 μ v x 6 .

Next, we choose β 1 as the bifurcation parameter, then setting R 0 2 = 1 gives

β h 1 = β h 1 * = R 0 μ h μ v 2 η + α 0 + μ h Λ h Λ v β v 1 .

The Jacobian matrix of system (17) at the dengue-free equilibrium is given as,

(18) J ( E 0 ) = μ h 0 0 δ 0 Λ h β h 1 μ h 0 η α 0 μ h 0 0 0 Λ h β h 1 μ h 0 η α 1 μ h 0 0 0 0 α 0 α 1 δ μ h 0 0 0 Λ v β v 1 μ v 0 0 μ v 0 0 Λ v β v 1 μ v 0 0 0 μ v .

The system (17) at the dengue-free equilibrium E 0 evaluated for β h 1 = β h 1 * has a simple zero eigenvalues λ 1 = 0, whereas the other five eigenvalues are λ 2 = −μ v , λ 3 = −μ h , λ 4 = −(α 1μ h ), λ 5 = −(δμ h ), and δ 6 = −(α 0 + ημ h μ v ) which all negative. Hence, we apply the Center Manifold Theorem to analyze system (17) near β h 1 = β h 1 * , which represent the analysis in the neighborhood of R 0 = 1 .

The Jacobian matrix J(E 0) at β h 1 = β h 1 * has a right eigenvector, which associated with λ 1 = 0, given by w = ( w 1 , w 2 , w 3 , w 4 , w 5 , w 6 ) . The right eigenvector w is obtained as follows:

(19) w 1 = δ η + δ α 1 + δ μ h + η α 1 + η μ h + α 0 α 1 + α 0 μ h + α 1 μ h + μ h 2 η δ + μ h , w 2 = α 1 + μ h η , w 3 = 1 , w 4 = η α 1 + α 0 α 1 + α 0 μ h η δ + μ h , w 5 = α 1 + μ h Λ v β v 1 η μ v 2 , w 6 = α 1 + μ h Λ v β v 1 η μ v 2 .

In a similar way, Jacobian matrix J(E 0) at β h 1 = β h 1 * also has left eigenvector that associated with λ 1 = 0, given by v = ( v 1 , v 2 , v 3 , v 4 , v 5 , v 6 ) , where

(20) v 1 = 0 , v 2 = 1 , v 3 = 0 , v 4 = 0 , v 5 = 0 , v 6 = μ v η + α 0 + μ h Λ v β v 1 .

To determine the bifurcation type of system (17) at R 0 = 1 , we will calculate the following second order partial derivatives of g i at the dengue-free equilibrium E 0. Since the eigenvector v 1 = 0, v 3 = 0, v 4 = 0, and v 5 = 0, we do not need to look for a partial derivative of g 1, g 3, g 4 and g 5. Therefore, we only calculate the second derivatives of g 2 and g 6. From non-zero g 2 and g 6, the second order derivatives are as follows:

2 g 2 x 1 x 2 = 2 g 2 x 2 x 1 = 1 Λ μ + ξ + η 3 μ + ξ + η 2 + γ 2 Λ β 3 + μ 2 + μ ξ + μ η 3 γ 2 + μ + ξ + η 3 Λ β 2 + μ 2 + μ ξ + μ η 2 δ + μ + ξ + η 2 + γ 2 Λ β 3 + μ 2 + μ ξ + μ η 3 γ 1 + μ η 1 + μ μ + ξ + η 3 , 2 g 2 x 1 x 3 = 2 g 2 x 3 x 1 = β 2 , 2 g 2 x 1 x 4 = 2 g 2 x 4 x 1 = β 3 , 2 g 2 x 2 β 1 = 2 g 2 β 1 x 2 = Λ μ . 2 g 2 x 1 x 6 = 2 g 2 x 6 x 1 = β h 1 , 2 g 2 x 2 x 6 = 2 g 2 x 6 x 2 = Λ h β h 2 μ h m , 2 g 2 x 3 x 6 = 2 g 2 x 6 x 3 = Λ h β h 2 μ h m , 2 g 6 x 2 x 3 = 2 g 6 x 3 x 2 = Λ v β v 2 μ v m , 2 g 6 x 2 x 5 = 2 g 6 x 5 x 2 = β v 1 , 2 g 2 x 6 β h 1 = 2 g 2 β h 1 x 6 = Λ h μ h ,

Now, let us calculate the coefficient A and B in Theorem 4.1 [54] of Castillo–Chavez and Song as follows.

A = k , i , j = 1 3 v k w i w j 2 g k x i x j ( 0,0 ) = v 2 w 1 w 6 2 g 2 x 1 x 6 + v 2 w 2 w 6 2 g 2 x 2 x 6 + v 2 w 3 w 6 2 g 2 x 3 x 6 + v 2 w 6 w 1 2 g 2 x 6 x 1 + v 2 w 6 w 2 2 g 2 x 6 x 2 + v 2 w 6 w 3 2 g 2 x 6 x 3 + v 6 w 2 w 3 2 g 6 x 2 x 3 + v 6 w 2 w 5 2 g 6 x 2 x 5 + v 6 w 3 w 2 2 g 6 x 3 x 2 + v 6 w 5 w 2 2 g 6 x 5 x 2 = 2 α 1 + μ h η 2 δ + μ h μ v 2 μ h m β v 1 δ η m Λ v β h 1 β v 1 2 μ h + δ η m α 1 β v 1 2 μ h μ v + δ η m β v 1 2 μ h 2 μ v + δ m Λ v α 1 β h 1 β v 1 2 μ h + δ m Λ v β h 1 β v 1 2 μ h 2 + δ m α 0 α 1 β v 1 2 μ h μ v + δ m α 0 β v 1 2 μ h 2 μ v + δ m α 1 β v 1 2 μ h 2 μ v + δ m β v 1 2 μ h 3 μ v + η m Λ v α 1 β h 1 β v 1 2 μ h + η m Λ v β h 1 β v 1 2 μ h 2 + η m α 1 β v 1 2 μ h 2 μ v + η m β v 1 2 μ h 3 μ v + m Λ v α 0 α 1 β h 1 β v 1 2 μ h + m Λ v α 0 β h 1 β v 1 2 μ h 2 + m Λ v α 1 β h 1 β v 1 2 μ h 2 + m Λ v β h 1 β v 1 2 μ h 3 + m α 0 α 1 β v 1 2 μ h 2 μ v + m α 0 β v 1 2 μ h 3 μ v + m α 1 β v 1 2 μ h 3 μ v + m β v 1 2 μ h 4 μ v + δ η 2 β v 2 μ h μ v 2 + δ η Λ h Λ v β h 2 β v 1 2 + δ η α 0 β v 2 μ h μ v 2 + δ η β v 2 μ h 2 μ v 2 + δ Λ h Λ v α 1 β h 2 β v 1 2 + δ Λ h Λ v β h 2 β v 1 2 μ h + η 2 β v 2 μ h 2 μ v 2 + η Λ h Λ v β h 2 β v 1 2 μ h + η α 0 β v 2 μ h 2 μ v 2 + η β v 2 μ h 3 μ v 2 + Λ h Λ v α 1 β h 2 β v 1 2 μ h + Λ h Λ v β h 2 β v 1 2 μ h 2 < 0

B = k , i = 1 3 v k w i 2 g 2 x 6 β h 1 ( 0 , 0 ) = α 1 + μ h Λ v β v 1 Λ h η μ h μ v 2 > 0 .

It can be seen that A < 0 and B > 0 . Hence, we establish the theorem, which states that model (2) always exhibit a forward bifurcation phenomenon at R 0 = 1 .

Appendix G: Proof of Theorem 4

The existence of optimal control of dengue control model in system (10) can be analyzed using the results by authors in [55]. Using a similar approach as in Lemma 2, it can be shown that system (10) is bounded above which allow us to use the result in [55] to show the existence of optimal control on our problem.

The integrand of the objective function which is given by

I ( t ) + w 1 u 1 2 ( t ) + w 2 u 2 2 ( t ) + w 3 u 3 2 ( t )

is convex on a convex and closed set of U . Furthermore, the state variables on human and mosquito, also control variables are non-negative. The compactness of the system is coming from the boundedness of the control system. Last, there exist a constant ζ > 1 and positive number k 1, k 2 such that

I ( t ) + w 1 u 1 2 ( t ) + w 2 u 2 2 ( t ) + w 3 u 3 2 ( t ) k 1 + k 2 ( | u 1 | 2 + | u 2 | 2 + | u 3 | 2 ) ζ ,

where k 1 is the lower bound of I(t), and k 2 = min(w 1, w 2, w 3).

Appendix H: Proof of Theorem 5

The adjoint variables z i  (i = 1, 2, 3, 4, 5, 6) satisfy the following system of ordinary differential equations.

(21) d z 1 d t = L S , = β h 1 β h 2 I + H ( 1 u 1 ) m + I + H V z 1 z 2 + μ h z 1 , d z 2 d t = L I , = 1 + β h 2 I + H ( ( 1 u 1 ) m + I + H ) 2 β h 2 1 ( 1 u 1 ) m + I + H S V ( z 1 z 2 ) + α 0 ( z 2 z 1 ) + ( η + u 2 ) ( z 2 z 3 ) + μ h z 2 + β v 1 β v 2 I + H ( 1 u 1 ) m + I + H U ( z 5 z 6 ) + β v 2 I + H ( ( 1 u 1 ) m + I + H ) 2 β v 2 1 ( 1 u 1 ) m + I + H U I ( z 5 z 6 ) , d z 3 d t = L H , = β h 2 I + H ( ( 1 u 1 ) m + I + H ) 2 β h 2 1 ( 1 u 1 ) m + I + H S V ( z 1 z 2 ) + μ h z 3 , + α 1 ( z 3 z 4 ) + β v 2 I + H ( ( 1 u 1 ) m + I + H ) 2 β v 2 1 ( 1 u 1 ) m + I + H U I ( z 5 z 6 ) ,

d z 4 d t = L R , = δ ( z 4 z 1 ) + μ h z 4 , d z 5 d t = L U , = β v 1 β v 2 I + H ( 1 u 1 ) m + I + H I ( z 5 z 6 ) + ( μ v + u 3 ) z 5 , d z 6 d t = L V , = β h 1 β h 2 I + H ( 1 u 1 ) m + I + H S z 1 z 2 + ( μ v + u 3 ) z 6 ,

supplemented with the transversality condition z i (T) = 0 for i = 1, 2, 3, 4, 5, 6. Taking the derivative of L with respect to u i yields

L u 1 = 2 w 1 u 1 + β h 2 ( H + I ) m S V ( ( 1 u 1 ) m + H + I ) 2 ( z 1 z 2 ) + β v 2 ( H + I ) m U I ( ( 1 u 1 ) m + H + I ) 2 ( z 5 z 6 ) , L u 2 = 2 w 2 u 2 + I ( z 3 z 2 ) , L u 3 = 2 w 3 u 3 U z 5 V z 6 .

Solving L u i = 0 with respect to all control variables yields

u 1 = 1 2 w 1 β h 2 ( H + I ) m S V ( ( 1 u 1 ) m + H + I ) 2 ( z 2 z 1 ) + β v 2 ( H + I ) m U I ( ( 1 u 1 ) m + H + I ) 2 ( z 6 z 5 ) , u 2 = 1 2 w 2 I ( z 2 z 3 ) , u 3 = 1 2 w 3 ( U z 5 + V z 6 ) .

Considering that the admissible control should lie between 0 and its upper bound, ( u i max ) , i = 1, 2, 3, the optimal u i * is given by

u 1 * = min max 0 , 1 2 w 1 β h 2 ( H + I ) m S V ( ( 1 u 1 ) m + H + I ) 2 ( z 2 z 1 ) + β v 2 ( H + I ) m U I ( ( 1 u 1 ) m + H + I ) 2 ( z 6 z 5 ) , u 1 max , u 2 * = min max 0 , 1 2 w 2 I ( z 2 z 3 ) , u 2 max , u 3 * = min max 0 , 1 2 w 3 ( U z 5 + V z 6 ) , u 3 max .

References

[1] S. Bhatt, P. W. Gething, O. J. Brady, et al.., “The global distribution and burden of dengue,” Nature, vol. 496, no. 7446, pp. 504–507, 2013. https://doi.org/10.1038/nature12060.Suche in Google Scholar PubMed PubMed Central

[2] L. C. Katzelnick, L. Gresh, M. E. Halloran, et al.., “Antibody-dependent enhancement of severe dengue disease in humans,” Science, vol. 358, no. 6365, pp. 929–932, 2017. https://doi.org/10.1126/science.aan6836.Suche in Google Scholar PubMed PubMed Central

[3] N. Anggriani, H. Tasman, M. Z. Ndii, A. K. Supriatna, E. Soewono, and E. Siregar, “The effect of reinfection with the same serotype on dengue transmission dynamics,” Appl. Math. Comput., vol. 349, pp. 62–80, 2019. https://doi.org/10.1016/j.amc.2018.12.022.Suche in Google Scholar

[4] H. S. Rodrigues, M. T. T. Monteiro, and F. M. D. Torres, “Dengue in Cape Verde: vector control and vaccination,” Math. Popul. Stud., vol. 20, no. 4, pp. 208–223, 2013. https://doi.org/10.1080/08898480.2013.831711.Suche in Google Scholar

[5] T. K. Kar, S. K. Nandi, S. Jana, and M. Mandal, “Stability and bifurcation analysis of an epidemic model with effect of media,” Chaos, Solit. Fractals, vol. 120, pp. 188–199, 2019. https://doi.org/10.1016/j.chaos.2019.01.025.Suche in Google Scholar

[6] C. J. Silva and D. F. M. Torres, “Optimal control for a tuberculosis model with reinfection and post-exposure interventions,” Math. Biosci., vol. 244, pp. 154–164, 2013. https://doi.org/10.1016/j.mbs.2013.05.005.Suche in Google Scholar PubMed

[7] D. K. Das, S. Khajanchi, and T. K. Kar, “The impact of the media awareness and optimal strategy on the prevalence of tuberculosis,” Appl. Math. Comput., vol. 366, p. 124732, 2020. https://doi.org/10.1016/j.amc.2019.124732.Suche in Google Scholar

[8] D. Aldila, S. H. A. Khoshnaw, E. Safitri, et al.., “A mathematical study on the spread of COVID-19 considering social distancing and rapid assessment: the case of Jakarta, Indonesia,” Chaos, Solit. Fractals, vol. 139, p. 110042, 2020. https://doi.org/10.1016/j.chaos.2020.110042.Suche in Google Scholar PubMed PubMed Central

[9] D. Aldila, “Analyzing the impact of the media campaign and rapid testing for COVID-19 as an optimal control problem in East Java, Indonesia,” Chaos, Solit. Fractals, vol. 141, p. 110364, 2020. https://doi.org/10.1016/j.chaos.2020.110364.Suche in Google Scholar PubMed PubMed Central

[10] D. Aldila, M. Z. Ndii, and B. M. Samiadji, “Optimal control on COVID-19 eradication program in Indonesia under the effect of community awareness,” Math. Biosci. Eng., vol. 17, no. 6, pp. 6355–6389, 2020. https://doi.org/10.3934/mbe.2020335.Suche in Google Scholar PubMed

[11] K. Sarkar, S. Khajanchi, and J. J. Nieto, “Modeling and forecasting the COVID-19 pan-demic in India,” Chaos, Solit. Fractals, vol. 139, p. 110049, 2020. https://doi.org/10.1016/j.chaos.2020.110049.Suche in Google Scholar PubMed PubMed Central

[12] D. K. Das, S. Khajanchi, and T. K. Kar, “Transmission dynamics of tuberculosis with multiple re-infections,” Chaos, Solit. Fractals, vol. 130, p. 109450, 2020. https://doi.org/10.1016/j.chaos.2019.109450.Suche in Google Scholar

[13] D. K. Das, S. Khajanchi, and T. K. Kar, “Influence of multiple re-infections in tuberculosis transmission dynamics: a Mathematical Approach,” in 2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO), Manama, Bahrain, 2019, pp. 1–5.10.1109/ICMSAO.2019.8880397Suche in Google Scholar

[14] S. Khajanchi, D. K. Das, and T. K. Kar, “Dynamics of tuberculosis transmission with exogenous reinfections and endogenous reactivation,” Phys. Stat. Mech. Appl., vol. 497, pp. 52–71, 2018. https://doi.org/10.1016/j.physa.2018.01.014.Suche in Google Scholar

[15] J. Mohammed-Awel, E. A. Iboi, and A. B. Gumel, “Insecticide resistance and malaria control: a genetics-epidemiology modeling approach,” Math. Biosci., vol. 325, p. 108368, 2020. https://doi.org/10.1016/j.mbs.2020.108368.Suche in Google Scholar PubMed

[16] L. Zhou, Y. Wang, Y. Xiao, and M. Y. Li, “Global dynamics of a discrete age-structured SIR epidemic model with applications to measles vaccination strategies,” Math. Biosci., vol. 308, pp. 27–37, 2019. https://doi.org/10.1016/j.mbs.2018.12.003.Suche in Google Scholar PubMed

[17] S. Khajanchi, “Stability analysis of a mathematical model for Glioma-Immune interaction under optimal therapy,” Int. J. Nonlinear Sci. Numer. Stimul., vol. 20, nos 3–4, pp. 269–285, 2019. https://doi.org/10.1515/ijnsns-2017-0206.Suche in Google Scholar

[18] Z. Zhang and S. Jain, “Mathematical model of Ebola and Covid-19 with fractional differential operators: non-Markovian process and class for virus pathogen in the environment,” Chaos, Solit. Fractals, vol. 140, p. 110175, 2020. https://doi.org/10.1016/j.chaos.2020.110175.Suche in Google Scholar PubMed PubMed Central

[19] R. Taghikhani and A. B. Gumel, “Mathematics of dengue transmission dynamics: roles of vector vertical transmission and temperature fluctuations,” Infect. Dis. Model., vol. 3, pp. 266–292, 2018. https://doi.org/10.1016/j.idm.2018.09.003.Suche in Google Scholar PubMed PubMed Central

[20] E. Barrios, S. Lee, and O. Vasilieva, “Assessing the effects of daily commuting in two-patch dengue dynamics: a case study of Cali, Colombia,” J. Theor. Biol., vol. 453, pp. 14–39, 2018. https://doi.org/10.1016/j.jtbi.2018.05.015.Suche in Google Scholar PubMed

[21] E. A. Iboi and A. B. Gumel, “Mathematical assessment of the role of Dengvaxia vaccine on the transmission dynamics of dengue serotypes,” Math. Biosci., vol. 304, pp. 25–47, 2018. https://doi.org/10.1016/j.mbs.2018.07.003.Suche in Google Scholar PubMed

[22] A. Abidemi, M. I. Abd Aziz, and R. Ahmad, “Vaccination and vector control effect on dengue virus transmission dynamics: modelling and simulation,” Chaos, Solit. Fractals, vol. 133, p. 109648, 2020. https://doi.org/10.1016/j.chaos.2020.109648.Suche in Google Scholar

[23] M. Z. Ndii, A. R. Mage, J. J. Messakh, and B. S. Djahi, “Optimal vaccination strategy for dengue transmission in Kupang city, Indonesia,” Heliyon, vol. 6, no. 11, p. e05345, 2020. https://doi.org/10.1016/j.heliyon.2020.e05345.Suche in Google Scholar PubMed PubMed Central

[24] L. Wang and H. Zhao, “Dynamics analysis of a Zika–dengue co-infection model with dengue vaccine and antibody-dependent enhancement,” Physica A, vol. 522, pp. 248–273, 2019. https://doi.org/10.1016/j.physa.2019.01.099.Suche in Google Scholar

[25] W. Bock and Y. Jayathunga, “Optimal control of a multi-patch dengue model under the influence of Wolbachia bacterium,” Math. Biosci., vol. 315, p. 108219, 2019. https://doi.org/10.1016/j.mbs.2019.108219.Suche in Google Scholar PubMed

[26] K. P. Wijaya, J. P. Chávez, and T. Göetz, “A dengue epidemic model highlighting vertical–sexual transmission and impulsive control strategies,” Appl. Math. Model., vol. 95, pp. 279–296, 2021.10.1016/j.apm.2021.02.008Suche in Google Scholar

[27] A. Din, T. Khan, Y. Li, H. Tahir, A. Khan, and W. A. Khan, “Mathematical analysis of dengue stochastic epidemic model,” Results Phys., vol. 20, p. 103719, 2021. https://doi.org/10.1016/j.rinp.2020.103719.Suche in Google Scholar

[28] K. F. Nipa, S. R.-J. Jang, and L. J. S. Allen, “The effect of demographic and environmental variability on disease outbreak for a dengue model with a seasonally varying vector population,” Math. Biosci., vol. 331, p. 108516, 2021. https://doi.org/10.1016/j.mbs.2020.108516.Suche in Google Scholar PubMed

[29] K. P. Wijaya, D. Aldila, K. K. W. H. Erandi, M. Fakhruddin, M. Amadi, and N. Ganegoda, “Learning from panel data of dengue incidence and meteorological factors in Jakarta, Indonesia,” Stoch. Environ. Res. Risk Assess., vol. 35, pp. 437–456, 2021. https://doi.org/10.1007/s00477-020-01887-w.Suche in Google Scholar

[30] K. P. Wijaya, D. Aldila, and L. E. Schäfer, “Learning the seasonality of disease incidences from empirical data,” Ecol. Complex., vol. 38, pp. 83–97, 2019. https://doi.org/10.1016/j.ecocom.2019.03.006.Suche in Google Scholar

[31] M. Z. Ndii, R. I. Hickson, D. Allingham, and G. N. Mercer, “Modelling the transmission dynamics of dengue in the presence of Wolbachia,” Math. Biosci., vol. 262, pp. 157–166, 2015. https://doi.org/10.1016/j.mbs.2014.12.011.Suche in Google Scholar PubMed

[32] P. Rashkov, “A model for a vector-borne disease with control based on mosquito repellents: a viability analysis,” J. Math. Anal. Appl., vol. 498, p. 124958, 2021. https://doi.org/10.1016/j.jmaa.2021.124958.Suche in Google Scholar

[33] A. Mishra and S. Gakkhar, “The effects of awareness and vector control on two strains dengue dynamics,” Appl. Math. Comput., vol. 246, pp. 159–167, 2014. https://doi.org/10.1016/j.amc.2014.07.115.Suche in Google Scholar

[34] T. T. Zheng and L. F. Nie, “Modelling the transmission dynamics of two-strain Dengue in the presence awareness and vector control,” J. Theor. Biol., vol. 443, pp. 82–91, 2018. https://doi.org/10.1016/j.jtbi.2018.01.017.Suche in Google Scholar PubMed

[35] K. P. Wijaya, J. P. Chávez, and D. Aldila, “An epidemic model highlighting humane social awareness and vector–host lifespan ratio variation,” Commun. Nonlinear Sci. Numer. Simulat., vol. 90, p. 105389, 2020. https://doi.org/10.1016/j.cnsns.2020.105389.Suche in Google Scholar

[36] F. Rocha, M. Aguiar, M. Souza, and N. Stollenwerk, “Time-scale separation and centre manifold analysis describing vector-borne disease dynamics,” Int. J. Comput. Math., vol. 90, no. 10, pp. 2105–2125, 2013. https://doi.org/10.1080/00207160.2013.783208.Suche in Google Scholar

[37] A. Pandey, A. Mubayi, and J. Medlock, “Comparing vector–host and SIR models for dengue transmission,” Math. Biosci., vol. 246, no. 2, pp. 252–259, 2013.10.1016/j.mbs.2013.10.007Suche in Google Scholar

[38] Z. Feng and J. X. Velasco-Hernández, “Competitive exclusion in a vector-host model for the dengue fever,” J. Math. Biol., vol. 35, no. 5, pp. 523–544, 1997.10.1007/s002850050064Suche in Google Scholar PubMed

[39] N. G. Reich, S. Shrestha, A. A. King, et al., “Interactions between serotypes of dengue highlight epidemiological impact of cross-immunity,” J. R. Soc. Interface, vol. 10, no. 86, p. 20130414, 2013.10.1098/rsif.2013.0414Suche in Google Scholar PubMed PubMed Central

[40] O. Diekmann, J. A. Heesterbeek, and M. G. Roberts, “The construction of next-generation matrices for compartmental epidemic models,” J. R. Soc. Interface, vol. 7, no. 47, pp. 873–885, 2010. https://doi.org/10.1098/rsif.2009.0386.Suche in Google Scholar PubMed PubMed Central

[41] O. Diekmann, J. A. P. Heesterbeek, and J. A. Metz, “On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations,” J. Math. Biol., vol. 28, no. 4, pp. 365–382, 1990. https://doi.org/10.1007/BF00178324.Suche in Google Scholar PubMed

[42] N. Chitnis, J. M. Hyman, and J. M. Cushing, “Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model,” Bull. Math. Biol., vol. 70, no. 5, pp. 1272–1296, 2008. https://doi.org/10.1007/s11538-008-9299-0.Suche in Google Scholar PubMed

[43] M. I. S. Rohman, B. D. Handari, and D. Aldila, “An impulse fumigation scenario to control dengue spreads,” AIP Conf. Proc., vol. 2023, p. 020213, 2018. https://doi.org/10.1063/1.5064210.Suche in Google Scholar

[44] D. Aldila, T. Götz, and E. Soewono, “An optimal control problem arising from a dengue disease transmission model,” Math. Biosci., vol. 242, no. 1, pp. 9–16, 2013. https://doi.org/10.1016/j.mbs.2012.11.014.Suche in Google Scholar PubMed

[45] Fatmawati and H. Tasman, “An optimal control strategy to reduce the spread of malaria resistance,” Math. Biosci., vol. 262, pp. 73–79, 2015. https://doi.org/10.1016/j.mbs.2014.12.005.Suche in Google Scholar PubMed

[46] E. Jung, S. Iwami, Y. Takeuchi, and T. C. Jo, “Optimal control strategy for prevention of avian influenza pandemic,” J. Theor. Biol., vol. 260, no. 2, pp. 220–229, 2009. https://doi.org/10.1016/j.jtbi.2009.05.031.Suche in Google Scholar PubMed

[47] H. R. Joshi, S. Lenhart, S. Hota, and F. Agusto, “Optimal control of an SIR model with changing behavior through an education campaign,” Electron. J. Differ. Equ., vol. 2015, no. 50, pp. 1–14, 2015.Suche in Google Scholar

[48] A. Kumar, P. K. Srivastava, Y. Dong, and Y. Takeuchi, “Optimal control of infectious disease: information-induced vaccination and limited treatment,” Phys. Stat. Mech. Appl., vol. 542, p. 123196, 2020. https://doi.org/10.1016/j.physa.2019.123196.Suche in Google Scholar

[49] A. G. Gupta, C. A. Moyer, and Stern, “The economic impact of quarantine: SARS in Toronto as a case study,” J. Infect. Disease., vol. 50, no. 5, pp. 386–393, 2005. https://doi.org/10.1016/j.jinf.2004.08.006.Suche in Google Scholar PubMed PubMed Central

[50] B. D. Handari, F. Vitra, R. Ahya, and D. Aldila, “Optimal control in a malaria model: intervention of fumigation and bed nets,” Adv. Differ. Equ., vol. 2019, no. 1, p. 497, 2019. https://doi.org/10.1186/s13662-019-2424-6.Suche in Google Scholar

[51] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, New York, John Wiley & Sons, 1962.Suche in Google Scholar

[52] M. Ghosh, S. Olaniyi, and O. S. Obabiyi, “Mathematical analysis of reinfection and relapse in malaria dynamics,” Appl. Math. Comput., vol. 373, p. 125044, 2020. https://doi.org/10.1016/j.amc.2020.125044.Suche in Google Scholar

[53] F. B. Agusto and I. M. ELmojtaba, “Optimal control and cost-effective analysis of malaria/visceral leishmaniasis co-infection,” PLoS One, vol. 12, no. 2, p. e0171102, 2017. https://doi.org/10.1371/journal.pone.0171102.Suche in Google Scholar PubMed PubMed Central

[54] C. Castillo-Chavez and B. Song, “Dynamical models of tuberculosis and their applications,” Math. Biosci. Eng., vol. 1, no. 2, p. 361, 2004. https://doi.org/10.3934/mbe.2004.1.361.Suche in Google Scholar PubMed

[55] W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, vol. 1, New York, Springer Science & Business Media, 2012.Suche in Google Scholar

Received: 2020-07-01
Accepted: 2021-11-04
Published Online: 2021-12-02
Published in Print: 2023-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Original Research Articles
  3. Modeling and assessment of the flow and air pollutants dispersion during chemical reactions from power plant activities
  4. Stochastic dynamics of dielectric elastomer balloon with viscoelasticity under pressure disturbance
  5. Unsteady MHD natural convection flow of a nanofluid inside an inclined square cavity containing a heated circular obstacle
  6. Fractional-order generalized Legendre wavelets and their applications to fractional Riccati differential equations
  7. Battery discharging model on fractal time sets
  8. Adaptive neural network control of second-order underactuated systems with prescribed performance constraints
  9. Optimal control for dengue eradication program under the media awareness effect
  10. Shifted Legendre spectral collocation technique for solving stochastic Volterra–Fredholm integral equations
  11. Modeling and simulations of a Zika virus as a mosquito-borne transmitted disease with environmental fluctuations
  12. Mathematical analysis of the impact of vaccination and poor sanitation on the dynamics of poliomyelitis
  13. Anti-sway method for reducing vibrations on a tower crane structure
  14. Stable soliton solutions to the time fractional evolution equations in mathematical physics via the new generalized G / G -expansion method
  15. Convergence analysis of online learning algorithm with two-stage step size
  16. An estimative (warning) model for recognition of pandemic nature of virus infections
  17. Interaction among a lump, periodic waves, and kink solutions to the KP-BBM equation
  18. Global exponential stability of periodic solution of delayed discontinuous Cohen–Grossberg neural networks and its applications
  19. An efficient class of fourth-order derivative-free method for multiple-roots
  20. Numerical modeling of thermal influence to pollutant dispersion and dynamics of particles motion with various sizes in idealized street canyon
  21. Construction of breather solutions and N-soliton for the higher order dimensional Caudrey–Dodd–Gibbon–Sawada–Kotera equation arising from wave patterns
  22. Delay-dependent robust stability analysis of uncertain fractional-order neutral systems with distributed delays and nonlinear perturbations subject to input saturation
  23. Construction of complexiton-type solutions using bilinear form of Hirota-type
  24. Inverse estimation of time-varying heat transfer coefficients for a hollow cylinder by using self-learning particle swarm optimization
  25. Infinite line of equilibriums in a novel fractional map with coexisting infinitely many attractors and initial offset boosting
  26. Lump solutions to a generalized nonlinear PDE with four fourth-order terms
  27. Quantum motion control for packaging machines
Heruntergeladen am 23.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2020-0142/html
Button zum nach oben scrollen