Abstract
Nanomaterials and their composites have been proven to be effective materials for various energy and environmental applications. In this way, functionalized polymers and their nanocomposites (NCs) are receiving much attention due to their tunable physico-chemical characteristics, cost and ease of availability. As an environmental application, particularly the removal of toxic dyes, photocatalysis has been reported as an emerging technology. The literature survey shows that functionalized polymer nanocomposites (PNCs) as photocatalysts offer an extensive contribution towards the generation of clean, renewable, and practical forms of energy from light-based pollutant removal as environmental remediation. Here, the present concept provides a brief introduction to the field of photocatalysis and environmental remediation, followed by the application of functionalized PNCs. In this view, TiO2–NCs are reported to be effective photocatalytic materials. In the present study, CNT-doped TiO2 NCs samples have been prepared using the sol–gel method and their photocatalytic activity has been investigated through a dye degradation experiment. Compared to the present studies, here the CNT content taken is very low, and it is found to be effective for the dye degradation part of an environmental cleaning application.
-
Research ethics: Not applicable.
-
Author contributions: Tarun Parangi has accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The author states no conflict of interest.
-
Research funding: The author thanks the University Grants Commission (UGC), New Delhi, India, for financial assistance under the Dr. D.S. Kothari Postdoctoral Fellowship (No. F.4.2/2006/(BSR)/CH/1617/0049).
-
Data availability: None declared.
References
1. Woan, K.; Pyrgiotakis, G.; Sigmund, W. Photocatalytic Carbon-Nanotube-TiO2 Composites. Adv. Mater. 2009, 21, 2233–2239. https://doi.10.1002/adma.200802738.10.1002/adma.200802738Suche in Google Scholar
2. Natarajan, T. S.; Lee, J. Y.; Bajaj, H. C.; Jo, W.-K.; Tayade, R. J. Synthesis of Multiwall Carbon Nanotubes/TiO2 Nanotube Composites with Enhanced Photocatalytic Decomposition Efficiency. Catal. Today 2017, 282 (1), 13–23. https://doi.org/10.1016/j.cattod.2016.03.018.Suche in Google Scholar
3. Yan, Y.; Miao, J.; Yang, Z.; Xiao, F.-X.; Yang, H. B.; Liu, B.; Yang, Y. Carbon Nanotube Catalysts: Recent Advances in Synthesis, Characterization and Applications. Chem. Soc. Rev. 2015, 44, 3295–3346. https://doi.10.1039/c4cs00492b.10.1039/C4CS00492BSuche in Google Scholar
4. Schneider, J.; Anpo, M.; Matsuoka, M.; Takeuchi, M.; Bahnemann, D. W.; Zhang, J.; Horiuchi, Y. Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114 (19), 9919–9986. https://doi.org/10.1021/cr5001892.Suche in Google Scholar PubMed
5. Parangi, T.; Mishra, M. K. Titania Nanoparticles as Modified Photocatalysts: A Review on Design and Development. Comments Inorg. Chem. 2019, 39 (2), 90–126. https://doi.org/10.1080/02603594.2019.1592751.Suche in Google Scholar
6. Yan, X.-B.; Tay, B. K.; Yang, Y. Dispersing and Functionalizing Multiwalled Carbon Nanotubes in TiO2 Sol. J. Phys. Chem. B 2006, 110, 25844–25849. https://doi.10.1021/jp065434g.10.1021/jp065434gSuche in Google Scholar PubMed
7. Yao, Y.; Li, G.; Ciston, S.; Lueptow, R. M.; Gray, K. A. Photoreactive TiO2/carbon Nanotube Composites: Synthesis and Reactivity. Environ. Sci. Technol. 2008, 42, 4952–4957. https://doi.10.1021/es800191n.10.1021/es800191nSuche in Google Scholar PubMed
8. Zein, S. H. S.; Boccaccini, A. Synthesis and Characterization of TiO2 Coated Multiwalled Carbon Nanotubes Using a Sol Gel Method. Ind. Eng. Chem. Res. 2008, 47, 6598–6606. https://doi.10.1021/ie701770q.10.1021/ie701770qSuche in Google Scholar
9. Ashkarran, A. A.; Fakhari, M.; Hamidinezhad, H.; Haddadi, H.; Nourani, M. R. TiO2 Nanoparticles Immobilized on Carbon Nanotubes for Enhanced Visible-Light Photo-Induced Activity. J. Mater. Res. Technol. 2015, 4 (2), 126–132. https://doi.org/10.1016/j.jmrt.2014.10.005.Suche in Google Scholar
10. Liu, B.; Xu, Y.; Cui, J.; Wang, S.; Wang, T. Carbon Nanotubes-Dispersed TiO2 Nanoparticles with Their Enhanced Photocatalytic Activity. Mater. Res. Bull. 2014, 59, 278–282. https://doi.org/10.1016/j.materresbull.2014.07.046.Suche in Google Scholar
11. Muduli, S. S.; Lee, W.; Dhas, V.; Mujawar, S.; Dubey, M.; Vijayamohanan, K.; Han, S.-H.; Ogale, S. Enhanced Conversion Efficiency in Dye-Sensitized Solar Cells Based on Hydrothermally Synthesized TiO2-MWCNT Nanocomposites. Appl. Mater. Interfaces 2009, 1 (9), 2030–2035. https://doi.org/10.1021/am900396m.Suche in Google Scholar PubMed
12. Olowoyo, J. O.; Kumar, M.; Jain, S. L.; Babalola, J. O.; Vorontsov, A. V.; Kumar, U. Insight into Reinforced Photocatalytic Activity of CNT-TiO2 Nanocomposite for CO Reduction and Water Splitting. J. Phys. Chem. C 2019, 123 (1), 367–378. https://doi.org/10.1021/acs.jpcc.8b07894.Suche in Google Scholar
13. Tarigh, G. D.; Shemirani, F.; Maz’hari, N. S. Fabrication of a Reusable Magnetic Multi-Walled Carbon Nanotube-TiO2 Nanocomposite by Electrostatic Adsorption: Enhanced Photodegradation of Malachite Green. RSC Adv. 2015, 5, 35070–35079. https://doi.org/10.1039/C4RA15593A.Suche in Google Scholar
14. Silva, C. G.; Sampaio, M. J.; Marques, R. R. N.; Ferreira, L. A.; Tavares, P. B.; Silva, A. M. T.; Faria, J. L. Photocatalytic Production of Hydrogen from Methanol and Saccharides Using Carbon Nanotube-TiO2 Catalysts. Appl. Catal. B Environ. 2015, 178, 82–90. https://doi.org/10.1016/j.apcatb.2014.10.032.Suche in Google Scholar
15. Melchionna, M.; Marchesan, S.; Prato, M.; Fornasiero, P. Carbon Nanotubes and Catalysis: The Many Facets of a Successful Marriage. Catal. Sci. Technol. 2015, 5 (8), 3859–3875. https://doi.org/10.1039/C5CY00651A.Suche in Google Scholar
16. Ramoraswi, N. O.; Ndungu, P. G. Photo-Catalytic Properties of TiO2 Supported on MWCNTs, SBA-15 and Silica-Coated MWCNTs Nanocomposites. Nanoscale Res. Lett. 2015, 10, 427. https://doi.org/10.1186/s11671-015-1137-3.Suche in Google Scholar PubMed PubMed Central
17. Kamil, A. M.; Mohammed, H. T.; Balakit, A. A.; Hussein, F. H.; Bahnemann, D. W.; El-Hiti, G. A. Synthesis, Characterization and Photocatalytic Activity of Carbon Nanotube/Titanium Dioxide Nanocomposites. Arab. J. Sci. Eng. 2018, 43, 199–210. https://doi.10.1007/s13369-017-2861-z.10.1007/s13369-017-2861-zSuche in Google Scholar
18. Oh, W.-C.; Zhang, F.-J.; Chen, M.-L. Characterization and Photodegradation Characteristics of Organic Dye for Pt–Titania Combined Multi-Walled Carbon Nanotube Composite Catalysts. J. Ind. Eng. Chem. 2010, 16 (2), 321–326. https://doi.org/10.1016/j.jiec.2010.01.032.Suche in Google Scholar
19. Zhang, F.-J.; Oh, W.-C. Visible Light Photocatalytic Properties of Novel Molybdenum Treated Carbon Nanotube/titania Composites. Bull. Mater. Sci. 2011, 34 (3), 543–549; https://doi.org/10.1007/s12034-011-0115-3.Suche in Google Scholar
20. Dalt, S. D.; Alves, A. K.; Bergmann, C. P. Preparation and Performance of TiO2-ZnO/CNT Hetero-Nanostructures Applied to Photodegradation of Organic Dye. Mater. Res. 2016, 19 (6), 1372–1375. https://doi.org/10.1590/1980-5373-MR-2016-0036.Suche in Google Scholar
21. Alsawat, M.; Altalhi, T.; Gulati, K.; Santos, A.; Losic, D. Synthesis of Carbon Nanotube–Nanotubular Titania Composites by Catalyst-Free CVD Process: Insights into the Formation Mechanism and Photocatalytic Properties. ACS Appl. Mater. Interfaces 2015, 7 (51), 28361–28368. https://doi.org/10.1021/acsami.5b08956. https://doi.10.1021/acsami.5b08956.Suche in Google Scholar PubMed
22. Bazli, L.; Siavashi, M.; Shiravi, A. A Review of Carbon nanotube/TiO2 Composite Prepared via Sol-Gel Method. J. Compos. Compd. 2019, 1, 1–9. https://doi.org/10.29252/jcc.1.1.1.Suche in Google Scholar
23. Muleja, A. A.; Mubiayi, M. P.; Hassard, F.; Mamba, B. B. Titania Containing Natural Clay Doped with Carbon Nanotubes for Enhanced Natural Photocatalytic Discoloration of Wastewater. J. Nanopart. Res. 2021, 23, 97. https://doi.org/10.1007/s11051-021-05194-5.Suche in Google Scholar
24. Wongaree, M.; Chiarakorn, S.; Chuangchote, S. Photocatalytic Improvement under Visible Light in TiO2 Nanoparticles by Carbon Nanotube Incorporation. J. Nanomater. 2015, 689306. https://doi.org/10.1155/2015/689306.Suche in Google Scholar
25. Yang, Y.; Liu, K.; Sun, F.; Liu, Y.; Chen, J. Enhanced Performance of Photocatalytic Treatment of Congo Red Wastewater by CNTs-Ag-Modified TiO2 under Visible Light. Environ. Sci. Pollut. Res. Int. 2022, 29 (11), 15516–15525. https://doi.org/10.1007/s11356-021-16734-w. https://doi.10.1007/s11356-021-16734-w.Suche in Google Scholar PubMed
26. Zhu, L.-W.; Zhou, L.-K.; Li, H.-X.; Wang, H.-F.; Lang, J.-P. One-Pot Growth of Free-Standing CNTs/TiO2 Nanofiber Membrane for Enhanced Photocatalysis. Mater. Lett. 2013, 95, 13–16. https://doi.org/10.1016/j.matlet.2013.01.004.Suche in Google Scholar
27. Paunovic, P.; Grozdanov, A.; Makreski, P.; Dimitrievska, I.; Petrovski, A. Structural Changes of TiO2 as a Result of CNTs Incorporation. Mater. Sci. Eng. 2022, 6 (2), 31–39; https://doi.org/10.15406/mseij.2022.06.00177.Suche in Google Scholar
28. Srinithi, S.; Balakumar, V.; Chen, T.-W.; Chen, S.-M.; Akilarasan, M.; Lou, B.-S.; Yu, J. In-Situ Fabrication of TiO2-MWCNT Composite for an Efficient Electron Transfer Photocatalytic Rhodamine B Dye Degradation under UV-Visible Light. Diam. Relat. Mater. 2023, 138, 110245. https://doi.org/10.1016/j.diamond.2023.110245.Suche in Google Scholar
29. Jiang, G.; Lin, Z.; Zhu, L.; Ding, Y.; Tang, H. Preparation and Photoelectrocatalytic Properties of Titania/Carbon Nanotube Composite Films. Carbon 2010, 48, 3369–3375. https://doi.org/10.1016/j.carbon.2010.05.029.Suche in Google Scholar
30. Koozekonan, A. G.; Esmaeilpour, M. R. M.; Kalantary, S.; Karimi, A.; Azam, K.; Golbabaei, F. Fabrication and Characterization of TiO2 and MWCNT Coated Electrospinning Nanofibers for UV Protection Properties. MethodsX 2021, 8, 101354. https://doi.org/10.1016/j.mex.2021.101354.Suche in Google Scholar PubMed PubMed Central
31. Nocun, M.; Slawomir, K.; Magdalena, K.; Iwona, G. Spectroscopy Studies of TiO2/Carbon Nanotubes Nanocomposite Layers Synthesized by the Sol-Gel Method. J. Mol. Struct. 2018, 1167, 194–199. https://doi.org/10.1016/j.molstruc.2018.04.095.Suche in Google Scholar
32. Alkahlawy, A.; El-Salamony, R. A.; Gobara, H. M. Photocatalytic Degradation of Congo Red Dye via Multi-Walled Carbon Nanotubes Modified CuO and ZnO Nanoparticles under Visible Light Irradiation. Egypt. J. Chem. 2021, 64 (3), 1481–1494. https://doi.10.21608/EJCHEM.2020.47684.2985.Suche in Google Scholar
33. Mombeshora, E. T.; Simoyi, R.; Nyamori, V. O.; Ndungu, P. Multiwalled Carbon Nanotube-Titania Nanocomposites: Understanding Nano-Structural Parameters and Functionality in Dye-Sensitized Solar Cells. S. Afr. J. Chem. 2015, 68, 153–164. https://doi.org/10.17159/0379-4350/2015/V68A22.Suche in Google Scholar
34. Chen, M.-L.; Zhang, F.-J.; Oh, W.-C. Synthesis, Characterization, and Photo-Catalytic Analysis of CNT/TiO2 Composites Derived from MWCNTs and Titanium Sources. New Carbon Mater. 2009, 24 (2), 159–166. https://doi.org/10.1016/S1872-5805(08)60045-1.Suche in Google Scholar
35. Li, Z.; Gao, B.; Chen, G. Z.; Mokaya, R.; Sotiropoulos, S.; Puma, G. L. Carbon Nanotube/Titanium Dioxide (CNT/TiO2) Core-Shell Nanocomposites with Tailored Shell Thickness, CNT Content and Photocatalytic/Photoelectrocatalytic Properties. Appl. Catal. B Environ. 2011, 110, 50–57. https://doi.10.1016/j.apcatb.2011.08.023.10.1016/j.apcatb.2011.08.023Suche in Google Scholar
36. Hamid, S. B. A.; Tan, T. L.; Lai, C. W.; Samsudin, E. M. Multiwalled Carbon nanotube/TiO2 Nanocomposite as a Highly Active Photocatalyst for Photodegradation of Reactive Black 5 Dye. Chinese J. Catal. 2014, 35 (12), 2014–2019. https://doi.org/10.1016/s1872-2067(14)60210-2.Suche in Google Scholar
37. Swamy, S. S.; Calderon-Moreno, J. M.; Yoshimura, M. Stability of Single-Wall Carbon Nanotubes under Hydrothermal Conditions. Coupling Titania Nanotubes and Carbon Nanotubes to Create Photocatalytic Nanocomposites. J. Mater. Res. 2002, 17, 734–737. https://doi.10.1557/JMR.2002.0106.10.1557/JMR.2002.0106Suche in Google Scholar
38. Vijayan, B. K.; Dimitrijevic, N. M.; Shapiro, D. F.; Wu, J.; Gray, K. A. Coupling Titania Nanotubes and Carbon Nanotubes to Create Photocatalytic Nanocomposites. ACS Catal. 2012, 2 (2), 223–229. https://doi.org/10.1021/cs200541a.Suche in Google Scholar
39. Liu, G.; Zhao, Y.; Deng, K.; Liu, Z.; Chu, W.; Chen, J.; Yang, Y.; Zheng, K.; Huang, H.; Ma, W.; Song, L.; Yang, H.; Gu, C.; Rao, G.; Wang, C.; Xie, S.; Sun, L. Highly Dense and Perfectly Aligned Single-Walled Carbon Nanotubes Fabricated by Diamond Wire Drawing Dies. Nano Lett. 2008, 8, 1071–1075. https://doi.org/10.1021/nl073007o.Suche in Google Scholar PubMed
40. Jiang, Y.; Lan, C. Low Temperature Synthesis of Multiwall Carbon Nanotubes from Carbonaceous Solid Prepared by Sol-Gel Autocombustion. Mater. Lett. 2015, 157, 269–272. https://doi.org/10.1016/j.matlet.2015.05.139.Suche in Google Scholar
41. Das, R.; Hamid, S. B. A.; Ali, M. E.; Ramakrishna, S.; Yongzhi, W. Carbon Nanotubes Characterization by X-Ray Powder Diffraction – A Review. Curr. Nanosci. 2015, 11 (1), 23–35. https://doi.org/10.2174/1573413710666140818210043.Suche in Google Scholar
42. Li, Y.; Li, L.; Li, C.; Chen, W.; Zeng, M.; Miura, H. Pt Dispersion Control in Pt/SiO2 by Calcination Temperature Using Chloroplatinic Acid as Catalyst Precursor. Appl. Catal. A Gen. 2012, 427–428, 85–91. https://doi.org/10.1016/j.apcata.2012.03.033.Suche in Google Scholar
43. Chu, L.; Qin, Z.; Yang, J.; Li, X. Anatase TiO2 Nanoparticles with Exposed {001} Facets for Efficient Dye-Sensitized Solar Cells. Sci. Rep. 2015, 5, 12143. https://doi.org/10.1038/srep12143.Suche in Google Scholar PubMed PubMed Central
44. Elamin, M. R.; Abdulkhair, B.; Taha, K. Effect of Urea on the Shape and Structure of Carbon Nanotubes. Z. Naturforsch. 2017, 73 (2), 113–120. https://doi.org/10.1515/zna-2017-0288.Suche in Google Scholar
45. Singh, M.; Duklan, N.; Singh, P.; Sharma, P. Synthesis and Photocatalytic Activity of Anatase TiO2 Nanoparticles for Degradation of Methyl Orange. AIP Conf. Proc. 2018, 1953, 030075. https://doi.org/10.1063/1.5032410.Suche in Google Scholar
46. Alam, M. J.; Cameron, D. C. Preparation and Characterization of TiO2 Thin Films by Sol-Gel Method. J. Sol-Gel Sci. Technol. 2002, 25, 137–145. https://doi.org/10.1023/A:1019912312654.10.1023/A:1019912312654Suche in Google Scholar
47. Santara, B.; Giri, P. K.; Imakita, K.; Fujii, M. Evidence of Oxygen Vacancy Induced Room Temperature Ferromagnetism in Solvothermally Synthesized Undoped TiO2 Nanoribbons. Nanoscale 2013, 5, 5476–5488. https://doi.org/10.1039/C3NR00799E.Suche in Google Scholar PubMed
48. Cooke, D. J.; Eder, D.; Elliott, J. A. Role of Benzyl Alcohol in Controlling the Growth of TiO2 on Carbon Nanotubes. J. Phys. Chem. C 2010, 114 (6), 2462–2470. https://doi.org/10.1021/jp909117x. http://doi.10.1021/jp909117x.Suche in Google Scholar
49. Osswald, S.; Havel, M.; Gogotsi, Y. Monitoring Oxidation of Multi Walled Carbon Nanotubes by Raman Spectroscopy. J. Raman Spectrosc. 2007, 38, 728–736. https://doi.org/10.1002/jrs.1686.Suche in Google Scholar
50. Kadam, A. N.; Lee, J.; Nipane, S. V.; Lee, S.-W. Nanocomposites for Visible Light Photocatalysis. In Micro and Nano Technologies, Nanostructured Materials for Visible Light Photocatalysis; Nayak, A. K.; Sahu, N. K., Eds.; Elsevier: Amsterdam, Netherlands, 2022; Ch. 11; pp. 295–317.10.1016/B978-0-12-823018-3.00017-8Suche in Google Scholar
51. Jo, W.-K.; Natrajan, T. S. Facile Synthesis of Novel Redox-Mediator-Free Direct Z-Scheme CaIn2S4 Marigold-Flower-Like/TiO2 Photocatalysts with Superior Photocatalytic Efficiency. ACS Appl. Mater. Interfaces 2015, 7, 17138–17154. https://doi.org/10.1021/acsami.5b03935.Suche in Google Scholar PubMed
52. Jo, W.-K.; Natrajan, T. S. Influence of TiO2 Morphology on the Photocatalytic Efficiency of Direct Z-Scheme G-C3N4/TiO2 Photocatalysts for Isoniazid Degradation. Chem. Eng. J. 2015, 281, 549–565. https://doi.org/10.1016/j.cej.2015.06.120.Suche in Google Scholar
53. Zhao, D.; Yang, X.; Chen, C.; Wang, X. Enhanced Photocatalytic Degradation of Methylene Blue on Multiwalled Carbon Nanotubes-TiO2. J. Colloid Interface Sci. 2013, 398, 234–239. https://doi.org/10.1016/j.jcis.2013.02.017.Suche in Google Scholar PubMed
54. Choudhury, B.; Dey, M.; Choudhury, A. Shallow and Deep Trap Emission and Luminescence Quenching of TiO2 Nanoparticles on Cu Doping. Appl. Nanosci. 2014, 4 (4), 499–506. https://doi.org/10.1007/s13204-013-0226-9.Suche in Google Scholar
55. Cao, Q.; Yu, Q.; Connell, D. W.; Yu, G. Titania/Carbon Nanotube Composite (TiO2/CNT) and its Application for Removal of Organic Pollutants. Clean Technol. Environ. Policy 2013, 15, 871–880. https://doi.org/10.1007/s10098-013-0581-y.Suche in Google Scholar
56. Carp, O.; Huisman, C. L.; Reller, A. Photoinduced Reactivity of Titanium Dioxide. Prog. Solid State Chem. 2004, 32 (1–2), 33–177. https://doi.org/10.1016/j.progsolidstchem.2004.08.001.Suche in Google Scholar
57. Patel, K.; Parangi, T.; Solanki, G. K.; Mishra, M. K.; Patel, K. D.; Pathak, V. M. Photocatalytic Degradation of Methylene Blue and Crystal Violet Dyes Under UV Light Irradiation by Sonochemically Synthesized CuSnSe Nanocrystals. Eur. Phys. J. Plus 2021, 136, 743. https://doi.org/10.1140/epjp/s13360-021-01725-0.Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Preparation of cellulose/activated carbon cells: application to the adsorption of cobalt from stagnant waters
- CNT/TiO2 nanocomposite for environmental remediation
- Examining the dual effect of copper nanoparticles and nitrogen doping on Cu@N-TiO2
- Mechanochemical synthesis of a red luminescent coordination polymer from a polydentate quinoline ligand with large conjugation
- Hybrid effect of neem seed and groundnut shell bio-fillers on the mechanical, water absorption and thermal properties of jute fiber reinforced epoxy composites
- Erosion behaviour of B4C/TiB2/Mo ceramic nozzles
- Facile fabrication of a flower-like superhydrophobic copper surface with superior corrosion resistance
- Characterisation of Fe, Cr and Al behaviour at the interface during diffusion bonding of ODS/Al couple
- Effect of shielding gas composition and pulsed current frequency on geometry and nitrogen content of 304L austenitic stainless-steel welds
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Preparation of cellulose/activated carbon cells: application to the adsorption of cobalt from stagnant waters
- CNT/TiO2 nanocomposite for environmental remediation
- Examining the dual effect of copper nanoparticles and nitrogen doping on Cu@N-TiO2
- Mechanochemical synthesis of a red luminescent coordination polymer from a polydentate quinoline ligand with large conjugation
- Hybrid effect of neem seed and groundnut shell bio-fillers on the mechanical, water absorption and thermal properties of jute fiber reinforced epoxy composites
- Erosion behaviour of B4C/TiB2/Mo ceramic nozzles
- Facile fabrication of a flower-like superhydrophobic copper surface with superior corrosion resistance
- Characterisation of Fe, Cr and Al behaviour at the interface during diffusion bonding of ODS/Al couple
- Effect of shielding gas composition and pulsed current frequency on geometry and nitrogen content of 304L austenitic stainless-steel welds
- News
- DGM – Deutsche Gesellschaft für Materialkunde