Home Mechanochemical synthesis of a red luminescent coordination polymer from a polydentate quinoline ligand with large conjugation
Article
Licensed
Unlicensed Requires Authentication

Mechanochemical synthesis of a red luminescent coordination polymer from a polydentate quinoline ligand with large conjugation

  • Xueli Jia and Fan Kong ORCID logo EMAIL logo
Published/Copyright: June 12, 2024
Become an author with De Gruyter Brill

Abstract

A red luminescent coordination polymer has been prepared from a polydentate 8-hydroxyquinoline ligand via mechanochemical synthesis. The obtained coordination polymer is micro/nano spherical and can suspend stably in organic solvents after ultrasonic treatment. Due to the large conjugation of the ligand with a strong polar s-triazine core, the coordination polymer shows a largely red-shifted emission relative to the ligand. The photoluminescence peak of the coordination polymer in organic solvent is at 613 nm, while a largely red-shifted photoluminescence peak at 675 nm and a shoulder peak at 770 nm are found in the photoluminescence spectrum of the coordination polymer in solid due to the strong interchain interaction.


Corresponding author: Fan Kong, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, P.R. China, E-mail: 

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Do, J. L.; Friščić, T. ACS Cent. Sci. 2017, 3, 13. https://doi.org/10.1021/acscentsci.6b00277.Search in Google Scholar PubMed PubMed Central

2. Biswal, B. P.; Chandra, S.; Kandambeth, S.; Lukose, B.; Heine, T.; Banerjee, R. J. Am. Chem. Soc. 2013, 135, 5328. https://doi.org/10.1021/ja4017842.Search in Google Scholar PubMed

3. Głowniak, S.; Szczęśniak, B.; Choma, J.; Jaroniec, M. Mater. Today 2021, 46, 109. https://doi.org/10.1016/j.mattod.2021.01.008.Search in Google Scholar

4. Troschke, E.; Grätz, S.; Lgbken, T.; Borchardt, L. Angew. Chem., Int. Ed. 2017, 56, 6859. https://doi.org/10.1002/anie.201702303.Search in Google Scholar PubMed

5. Julien, P. A.; Užarević, K.; Katsenis, A. D.; Kimber, S. A. J.; Wang, T.; Farha, O. K.; Zhang, Y.; Casaban, J.; Germann, L. S.; Etter, M.; Dinnebier, R. E.; James, S. L.; Halasz, I.; Friščić, T. J. Am. Chem. Soc. 2016, 138, 2929. https://doi.org/10.1021/jacs.5b13038.Search in Google Scholar PubMed

6. Pisanò, G.; Cazin, C. S. J. ACS Sustain. Chem. Eng. 2021, 9, 9625. https://doi.org/10.1021/acssuschemeng.1c00556.Search in Google Scholar

7. Ma, X.; Lim, G. K.; Harris, K. D. M.; Apperley, D. C.; Horton, P. N.; Hursthouse, M. B.; James, S. L. Cryst. Growth Des. 2012, 12, 5869. https://doi.org/10.1021/cg301291w.Search in Google Scholar

8. Tagaya, M.; Motozuka, S.; Kobayashi, T.; Ikoma, T.; Tanaka, J. Ind. Eng. Chem. Res. 2012, 51, 11294. https://doi.org/10.1021/ie301755z.Search in Google Scholar

9. Crawford, D. E.; James, S. L.; McNally, T. ACS Sustain. Chem. Eng. 2018, 6, 193. https://doi.org/10.1021/acssuschemeng.7b02202.Search in Google Scholar

10. Wang, R. F.; Cao, Y. L.; Jia, D. Z.; Liu, L.; Li, F. Opt. Mater. 2013, 36, 232. https://doi.org/10.1016/j.optmat.2013.08.032.Search in Google Scholar

11. Du, F. F.; Wang, H.; Bao, Y. Y.; Liu, B.; Zheng, H. T.; Bai, R. K. J. Mater. Chem. 2011, 21, 10859. https://doi.org/10.1039/c1jm11389e.Search in Google Scholar

12. Jiang, P.; Huang, W. M.; Li, J. T.; Zhuang, D. K.; Shi, J. L. J. Mater. Chem. 2008, 18, 3688. https://doi.org/10.1039/b807358a.Search in Google Scholar

13. Xiao, L. F.; Liu, Y.; Xiu, Q.; Zhang, L. R.; Guo, L. H.; Zhang, H. L.; Zhong, C. F. J. Polym. Sci. Pol. Chem. 2010, 48, 1943. https://doi.org/10.1002/pola.23961.Search in Google Scholar

14. Chen, D.; Zhang, P. F.; Fang, Q. R.; Wan, S.; Li, H.; Yang, S. Z.; Huang, C. L.; Dai, S. Inorg. Chem. Front. 2018, 5, 2018. https://doi.org/10.1039/c8qi00471d.Search in Google Scholar

15. Chen, J.; Du, C.; Zhang, Y.; Wei, W.; Wan, L.; Xie, M. J.; Tian, Z. F. Polymer 2019, 162, 43. https://doi.org/10.1016/j.polymer.2018.12.030.Search in Google Scholar

16. Zhang, Y.; Zhang, X. L.; Gao, J.; Du, C.; Xie, M. J.; Au, C. K.; Chen, J.; Wan, L. Macromol. Chem. Phys. 2020, 221, 202000076. https://doi.org/10.1002/macp.202000076.Search in Google Scholar

17. Xiao, L. F.; Liu, Y.; Zhou, Y.; Huang, H. L.; Li, L. L.; Zhong, C. F. J. Coord. Chem. 2010, 28, 3117. https://doi.org/10.1080/00958972.2010.503272.Search in Google Scholar

18. Huo, Y. P.; Zhu, S. Z. Chin. J. Chem. 2010, 28, 1389. https://doi.org/10.1002/cjoc.201090238.Search in Google Scholar

19. Sołtys-Brzostek, K.; Sokołowski, K.; Justyniak, I.; Leszczyński, M. K.; Olejnik-Fehér, N.; Lewiński, J. Molecules 2021, 26, 7402. https://doi.org/10.3390/molecules26237402.Search in Google Scholar PubMed PubMed Central

20. Freitas, A. R.; Silva, M.; Ramos, M. L.; Justino, L. L. G.; Fonseca, S. M.; Barsan, M. M.; Brett, C. M. A.; Silva, M. R.; Burrows, H. D. Dalton Trans. 2015, 44, 11491. https://doi.org/10.1039/c5dt00727e.Search in Google Scholar PubMed

21. Zhu, C. F.; Wang, Y. F.; Mao, Q. Q.; Li, F.; Li, Y. G.; Chen, C. L. Materials 2017, 10, 313. https://doi.org/10.3390/ma10030313.Search in Google Scholar PubMed PubMed Central

22. Wang, Z. J.; Yin, S. G.; Yang, X. H.; Sun, Z. Y.; Xu, X. R.; Zhang, X. K. Chem. Phys. Lett. 1999, 307, 75. https://doi.org/10.1016/S0009-2614(99)00451-0.Search in Google Scholar

23. Kong, F.; Zhang, S. Y.; Yang, C. Z.; Yuan, R. K. Mater. Lett. 2006, 60, 3887. https://doi.org/10.1016/j.matlet.2006.03.134.Search in Google Scholar

Received: 2023-09-28
Accepted: 2024-02-26
Published Online: 2024-06-12
Published in Print: 2024-07-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2023-0273/html
Scroll to top button