Abstract
B4C/TiB2/Mo ceramic nozzles were obtained by uniaxial hot-pressing. The mechanical properties and erosion behaviour of B4C/TiB2/Mo ceramic nozzles were investigated. Volume erosion rate was used to rank the erosion behaviour of the B4C/TiB2/Mo ceramic nozzles. The relationship between mechanical properties and the volume erosion rate of the nozzles was discussed. X-ray diffraction analysis showed that in-situ reaction to form TiB2 happened during sintering. Scanning electron microscopy was employed to observe the fracture surfaces and eroded surfaces of B4C/TiB2/Mo ceramic nozzles. A model of erodent particles and nozzle during the erosion test was established using the JH2 model. The maximum von Mises stresses on the entry, middle and exit surfaces of the nozzle were calculated. The result showed that the hardness played a key role in influencing the erosion behaviour of B4C/TiB2/Mo ceramic nozzles. Erosion mechanisms of B4C/TiB2/Mo ceramic nozzles at the entry, middle and exit bore area were mainly brittle fracture, fracture & plowing and micro-plowing, respectively.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: National Natural Science Foundation of China (Grant No. 51505208), Natural Science Foundation of Shandong Province (Grant No. ZR2021ME152 and ZR2022ME169).
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Wilson, D. I.; Köhler, H.; Cai, L.; Majschak, J.-P.; Davidson, J. F. Chem. Eng. Sci. 2015, 123, 450–459. https://doi.org/10.1016/j.ces.2014.11.006.Search in Google Scholar
2. Hwang, K. S.; Lee, M. J.; Yi, M. Y.; Lee, J. W. Thin Solid Films 2009, 517 (14), 3866–3869. https://doi.org/10.1016/j.tsf.2009.01.132.Search in Google Scholar
3. Foley, D. Met. Finish. 2010, 108 (11–12), 219–225. https://doi.org/10.1016/S0026-0576(10)80233-8.Search in Google Scholar
4. Ozcelik, Y.; Tercan, A. E.; Yilmazkaya, E.; Ciccu, R.; Costa, G. Constr. Build. Mater. 2011, 25 (11), 4271–4278. https://doi.org/10.1016/j.conbuildmat.2011.04.071.Search in Google Scholar
5. Deng, J. X.; Liu, L. L.; Li, J. F.; Ding, M. W.; Yang, X. F. Int. J. Refract. Met. Hard. Mater. 2007, 25 (2), 130–137. https://doi.org/10.1016/j.ijrmhm.2006.03.006.Search in Google Scholar
6. Liu, C. X.; Zhang, J. H.; Sun, J. L.; Zhang, X. H. J. Eur. Ceram. Soc. 2008, 28 (1), 199–204. https://doi.org/10.1016/j.jeurceramsoc.2007.05.023.Search in Google Scholar
7. Chacon-Nava, J. G.; Stott, F. H.; Torre, S. D. D. L.; Martinez-Villafane, A. Mater. Lett. 2002, 55 (4), 269–273. https://doi.org/10.1016/S0167-577X(01)00659-0.Search in Google Scholar
8. Liu, C. X.; Zhang, J. H.; Sun, J. L.; Zhang, X. H. Wear 2008, 265 (3–4), 286–291. https://doi.org/10.1016/j.wear.2007.10.016.Search in Google Scholar
9. Deng, J. X.; Sun, J. L. Int. J. Refract. Met. Hard Mater. 2008, 26 (3), 128–134. https://doi.org/10.1016/j.ijrmhm.2007.06.001.Search in Google Scholar
10. Liu, C. X.; Sun, J. L. Ceram. Int. 2010, 36 (4), 1297–1302. https://doi.org/10.1016/j.ceramint.2009.12.024.Search in Google Scholar
11. Sun, J. L.; Liu, C. X.; Tian, J.; Feng, B. F. Ceram. Int. 2012, 38 (8), 6599–6605. https://doi.org/10.1016/j.ceramint.2012.05.045.Search in Google Scholar
12. Alemu, W. Y.; Chen, P. L.; Chen, J. K. Ceram. Int. 2023, 49 (24), 40689–40694. https://doi.org/10.1016/j.ceramint.2023.10.052.Search in Google Scholar
13. Gu, M. L.; Huang, C. Z.; Zou, B.; Liu, B. Q. Mater. Sci. Eng. A 2006, 433 (1–2), 39–44. https://doi.org/10.1016/j.msea.2006.07.012.Search in Google Scholar
14. Sun, J. L.; Deng, J. X.; Liu, C. X. J. Mater. Eng. 2007, 1 (1), 42–46. https://doi.org/JournalArticle/5aea1e83c095d713d8a1fb4c.Search in Google Scholar
15. Cook, R. F.; Lawn, B. R. J. Am. Ceram. Soc. 1983, 66 (11), 200–201. https://doi.org/10.1111/j.1151-2916.1983.tb10571.x.Search in Google Scholar
16. Deng, J. X.; Liu, L. L.; Ding, M. W. Mater. Des. 2007, 28 (7), 2099–2105. https://doi.org/10.1016/j.matdes.2006.05.025.Search in Google Scholar
17. Deng, J. X. Mater. Sci. Eng. A 2005, 408 (1–2), 227–233. https://doi.org/10.1016/j.msea.2005.07.029.Search in Google Scholar
18. Lawn, B. R.; Marshall, D. B.; Anstis, G. R.; Dabbs, T. P. J. Mater. Sci. 1981, 16 (10), 2846–2854. https://doi.org/10.1007/bf02402849.Search in Google Scholar
19. Leonardus, J. M. G.; Dortmans, G. D. J. Am. Ceram. Soc. 1991, 74 (9), 2293–2294. https://doi.org/10.1111/j.1151-2916.1991.tb08298.x.Search in Google Scholar
20. Ritter, J. E.; Strzepa, P.; Jakus, K.; Rosenfeld, L.; Buckman, K. J. J. Am. Ceram. Soc. 1984, 67 (11), 769–774. https://doi.org/10.1111/j.1151-2916.1984.tb19515.x.Search in Google Scholar
21. Slikkerveer, P. J.; Bouten, P. C. P.; in’t Veld, F. H.; Scholten, H. Wear 1998, 217 (2), 237–250. https://doi.org/10.1016/S0043-1648(98)00187-2.Search in Google Scholar
22. Johnson, G. R.; Holmquist, T. J. J. Appl. Phys. 1999, 85 (12), 8060–8073. https://doi.org/10.1063/1.370643.Search in Google Scholar
23. Holmquist, T. J.; Johnson, G. R. J. Appl. Phys. 2005, 97 (9), 093502. https://doi.org/10.1063/1.1881798.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Preparation of cellulose/activated carbon cells: application to the adsorption of cobalt from stagnant waters
- CNT/TiO2 nanocomposite for environmental remediation
- Examining the dual effect of copper nanoparticles and nitrogen doping on Cu@N-TiO2
- Mechanochemical synthesis of a red luminescent coordination polymer from a polydentate quinoline ligand with large conjugation
- Hybrid effect of neem seed and groundnut shell bio-fillers on the mechanical, water absorption and thermal properties of jute fiber reinforced epoxy composites
- Erosion behaviour of B4C/TiB2/Mo ceramic nozzles
- Facile fabrication of a flower-like superhydrophobic copper surface with superior corrosion resistance
- Characterisation of Fe, Cr and Al behaviour at the interface during diffusion bonding of ODS/Al couple
- Effect of shielding gas composition and pulsed current frequency on geometry and nitrogen content of 304L austenitic stainless-steel welds
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Original Papers
- Preparation of cellulose/activated carbon cells: application to the adsorption of cobalt from stagnant waters
- CNT/TiO2 nanocomposite for environmental remediation
- Examining the dual effect of copper nanoparticles and nitrogen doping on Cu@N-TiO2
- Mechanochemical synthesis of a red luminescent coordination polymer from a polydentate quinoline ligand with large conjugation
- Hybrid effect of neem seed and groundnut shell bio-fillers on the mechanical, water absorption and thermal properties of jute fiber reinforced epoxy composites
- Erosion behaviour of B4C/TiB2/Mo ceramic nozzles
- Facile fabrication of a flower-like superhydrophobic copper surface with superior corrosion resistance
- Characterisation of Fe, Cr and Al behaviour at the interface during diffusion bonding of ODS/Al couple
- Effect of shielding gas composition and pulsed current frequency on geometry and nitrogen content of 304L austenitic stainless-steel welds
- News
- DGM – Deutsche Gesellschaft für Materialkunde