Home Facile fabrication of a flower-like superhydrophobic copper surface with superior corrosion resistance
Article
Licensed
Unlicensed Requires Authentication

Facile fabrication of a flower-like superhydrophobic copper surface with superior corrosion resistance

  • Fan Jiang ORCID logo EMAIL logo , Tongyu Song , Yilong Kuang and Hongyan Wu
Published/Copyright: June 12, 2024
Become an author with De Gruyter Brill

Abstract

A superhydrophobic copper coating was prepared by combining ionic liquid copper electrodeposition and a brief stearic acid modification process. After modification, the copper stearic acid was well formed and flower-like clusters were present on the surface of the superhydrophobic coating. Finally, the surface of the sample exhibits a good superhydrophobic performance with a contact angle of 158° and obvious self-cleaning behavior. The results of potentiodynamic polarization and electrochemical impedance measurements revealed that the presence of a superhydrophobic surface could improve the anti-corrosion property of the samples.


Corresponding author: Fan Jiang, School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, 210044, Nanjing, P.R. China; and Jiashan Xinhai Precision Castings Co., Ltd., Jiashan County, 314101, Zhejiang Province, P.R. China, E-mail: 

  1. Research ethics: The local Institutional Review Board deemed the study exempt from review.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no competing interests.

  4. Research funding: This work has been supported by the National Natural Science Foundation of China (No.51601097).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Feng, L. B.; Wang, J.; Shi, X. T.; Chai, C. S. Appl. Phys. A 2019, 125, 261. https://doi.org/10.1007/s00339-019-2562-4.Search in Google Scholar

2. Jain, R.; Pitchumani, R. Langmuir 2018, 34, 3159. https://doi.org/10.1021/acs.langmuir.7b02227.Search in Google Scholar PubMed

3. Han, X. T.; Yang, F. C.; Fu, J.; Guo, Z. G. Chem. Lett. 2018, 47, 872. https://doi.org/10.1246/cl.180207.Search in Google Scholar

4. Wang, Y.; Reddy, R. G.; Wang, R. J. Cleaner Prod. 2021, 287, 125043. https://doi.org/10.1016/j.jclepro.2020.125043.Search in Google Scholar

5. Peng, B.; Wang, H. G.; Yue, C. S.; Li, C.; Zhang, M.; Guo, M. Chem. Lett. 2019, 48, 333. https://doi.org/10.1246/cl.180987.Search in Google Scholar

6. Xie, X. L.; Zou, X. L.; Lu, X. G.; Zheng, K.; Cheng, H. W.; Xu, Q.; Zhou, Z. F. J. Electrochem. Soc. 2016, 163, D537. https://doi.org/10.1149/2.1241609jes.Search in Google Scholar

7. Zhang, S. B.; Jiang, F.; Kuang, Y. L.; Xie, Z. J.; Zhu, T. Q.; Li, S. F.; Hu, C. Q. Int. J. Mater. Res. 2022, 113, 785. https://doi.org/10.1515/ijmr-2021-8270.Search in Google Scholar

8. Alesary, H. F.; Ismail, H. K.; Odda, A. H.; Watkins, M. J.; Majhool, A. A.; Ballantyne, A. D.; Ryder, K. S. J. Electroanal. Chem. 2021, 897, 115581. https://doi.org/10.1016/j.jelechem.2021.115581.Search in Google Scholar

9. Jiang, F.; Zhu, T. Q.; Kuang, Y. L.; Wu, H. Y.; Li, S. F. Chem. Phys. Lett. 2023, 811, 140197. https://doi.org/10.1016/j.cplett.2022.140197.Search in Google Scholar

10. He, Z. B.; Chen, B. Y.; Zhou, B. W.; Liu, F.; Hu, Q.; Qin, Z. B.; Gao, Z. M.; Hu, W. B.; Wu, Z. Corros. Sci. 2023, 211, 110886. https://doi.org/10.1016/j.corsci.2022.110886.Search in Google Scholar

11. Mousavi, S. M. A.; Pitchumani, R. Corros. Sci. 2021, 186, 109420. https://doi.org/10.1016/j.corsci.2021.109420.Search in Google Scholar

12. Yang, J. F.; Wang, R. Y.; Long, F.; Zhang, X. W.; Liu, J.; Hu, W. B.; Liu, L. Mater. Des. 2021, 206, 109827. https://doi.org/10.1016/j.matdes.2021.109827.Search in Google Scholar

13. Wang, S.; Feng, L.; Jiang, L. Adv. Mater. 2006, 18, 767. https://doi.org/10.1002/adma.200501794.Search in Google Scholar

14. Zheng, T. X.; Hu, Y. B.; Zhang, Y. X.; Pan, F. S. J. Colloid Interface Sci. 2017, 505, 87–95. https://doi.org/10.1016/j.jcis.2017.05.092.Search in Google Scholar PubMed

15. Li, J. Y.; Lu, S. X.; Xu, W. G.; He, G.; Yu, T. L.; Cheng, Y. Y.; Wu, B. J. Mater. Sci. 2018, 53, 1097. https://doi.org/10.1007/s10853-017-1569-5.Search in Google Scholar

16. Sui, F.; An, T.; Zheng, S. Q.; Chen, L. Q.; Li, S. Y. Corros. Sci. 2022, 204, 110386. https://doi.org/10.1016/j.corsci.2022.110386.Search in Google Scholar

17. Wan, H. R.; Ju, X. Z.; He, T. T.; Shen, X. R.; Shen, H. R.; Yu, H. R.; Lu, Y. L.; Li, J. N.; Chen, T. Chem. Lett. 2021, 50, 386. https://doi.org/10.1246/cl.200800.Search in Google Scholar

18. Sadeghi, S.; Ebrahimifar, H. Int. J. Mater. Res. 2021, 112, 474. https://doi.org/10.1515/ijmr-2020-7872.Search in Google Scholar

19. Liu, Y.; Li, S. Y.; Zhang, J. J.; Liu, J. A.; Han, Z. W.; Ren, L. Q. Corros. Sci. 2015, 94, 190–196. https://doi.org/10.1016/j.corsci.2015.02.009.Search in Google Scholar

20. Sinhmar, S.; Dwivedi, D. K. Corros. Sci. 2018, 133, 25. https://doi.org/10.1016/j.corsci.2018.01.012.Search in Google Scholar

21. Peng, S.; Xie, S. K.; Xiao, F.; Lu, J. T. Corros. Sci. 2020, 163, 108237. https://doi.org/10.1016/j.corsci.2019.108237.Search in Google Scholar

Received: 2023-03-19
Accepted: 2024-02-04
Published Online: 2024-06-12
Published in Print: 2024-07-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2023-0108/html
Scroll to top button