Startseite Erosion behaviour of B4C/TiB2/Mo ceramic nozzles
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Erosion behaviour of B4C/TiB2/Mo ceramic nozzles

  • Tong Li , Kai Zhang , Qiancheng Liu , Yutong Feng , Kairuo Chen , Yijie Lin , Yichen Zhao , Junlong Sun und Changxia Liu ORCID logo EMAIL logo
Veröffentlicht/Copyright: 27. Mai 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

B4C/TiB2/Mo ceramic nozzles were obtained by uniaxial hot-pressing. The mechanical properties and erosion behaviour of B4C/TiB2/Mo ceramic nozzles were investigated. Volume erosion rate was used to rank the erosion behaviour of the B4C/TiB2/Mo ceramic nozzles. The relationship between mechanical properties and the volume erosion rate of the nozzles was discussed. X-ray diffraction analysis showed that in-situ reaction to form TiB2 happened during sintering. Scanning electron microscopy was employed to observe the fracture surfaces and eroded surfaces of B4C/TiB2/Mo ceramic nozzles. A model of erodent particles and nozzle during the erosion test was established using the JH2 model. The maximum von Mises stresses on the entry, middle and exit surfaces of the nozzle were calculated. The result showed that the hardness played a key role in influencing the erosion behaviour of B4C/TiB2/Mo ceramic nozzles. Erosion mechanisms of B4C/TiB2/Mo ceramic nozzles at the entry, middle and exit bore area were mainly brittle fracture, fracture & plowing and micro-plowing, respectively.


Corresponding author: Changxia Liu, School of Transportation, Ludong University, Yantai 264025, Shandong Province, P.R. China, E-mail: 

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: National Natural Science Foundation of China (Grant No. 51505208), Natural Science Foundation of Shandong Province (Grant No. ZR2021ME152 and ZR2022ME169).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Wilson, D. I.; Köhler, H.; Cai, L.; Majschak, J.-P.; Davidson, J. F. Chem. Eng. Sci. 2015, 123, 450–459. https://doi.org/10.1016/j.ces.2014.11.006.Suche in Google Scholar

2. Hwang, K. S.; Lee, M. J.; Yi, M. Y.; Lee, J. W. Thin Solid Films 2009, 517 (14), 3866–3869. https://doi.org/10.1016/j.tsf.2009.01.132.Suche in Google Scholar

3. Foley, D. Met. Finish. 2010, 108 (11–12), 219–225. https://doi.org/10.1016/S0026-0576(10)80233-8.Suche in Google Scholar

4. Ozcelik, Y.; Tercan, A. E.; Yilmazkaya, E.; Ciccu, R.; Costa, G. Constr. Build. Mater. 2011, 25 (11), 4271–4278. https://doi.org/10.1016/j.conbuildmat.2011.04.071.Suche in Google Scholar

5. Deng, J. X.; Liu, L. L.; Li, J. F.; Ding, M. W.; Yang, X. F. Int. J. Refract. Met. Hard. Mater. 2007, 25 (2), 130–137. https://doi.org/10.1016/j.ijrmhm.2006.03.006.Suche in Google Scholar

6. Liu, C. X.; Zhang, J. H.; Sun, J. L.; Zhang, X. H. J. Eur. Ceram. Soc. 2008, 28 (1), 199–204. https://doi.org/10.1016/j.jeurceramsoc.2007.05.023.Suche in Google Scholar

7. Chacon-Nava, J. G.; Stott, F. H.; Torre, S. D. D. L.; Martinez-Villafane, A. Mater. Lett. 2002, 55 (4), 269–273. https://doi.org/10.1016/S0167-577X(01)00659-0.Suche in Google Scholar

8. Liu, C. X.; Zhang, J. H.; Sun, J. L.; Zhang, X. H. Wear 2008, 265 (3–4), 286–291. https://doi.org/10.1016/j.wear.2007.10.016.Suche in Google Scholar

9. Deng, J. X.; Sun, J. L. Int. J. Refract. Met. Hard Mater. 2008, 26 (3), 128–134. https://doi.org/10.1016/j.ijrmhm.2007.06.001.Suche in Google Scholar

10. Liu, C. X.; Sun, J. L. Ceram. Int. 2010, 36 (4), 1297–1302. https://doi.org/10.1016/j.ceramint.2009.12.024.Suche in Google Scholar

11. Sun, J. L.; Liu, C. X.; Tian, J.; Feng, B. F. Ceram. Int. 2012, 38 (8), 6599–6605. https://doi.org/10.1016/j.ceramint.2012.05.045.Suche in Google Scholar

12. Alemu, W. Y.; Chen, P. L.; Chen, J. K. Ceram. Int. 2023, 49 (24), 40689–40694. https://doi.org/10.1016/j.ceramint.2023.10.052.Suche in Google Scholar

13. Gu, M. L.; Huang, C. Z.; Zou, B.; Liu, B. Q. Mater. Sci. Eng. A 2006, 433 (1–2), 39–44. https://doi.org/10.1016/j.msea.2006.07.012.Suche in Google Scholar

14. Sun, J. L.; Deng, J. X.; Liu, C. X. J. Mater. Eng. 2007, 1 (1), 42–46. https://doi.org/JournalArticle/5aea1e83c095d713d8a1fb4c.Suche in Google Scholar

15. Cook, R. F.; Lawn, B. R. J. Am. Ceram. Soc. 1983, 66 (11), 200–201. https://doi.org/10.1111/j.1151-2916.1983.tb10571.x.Suche in Google Scholar

16. Deng, J. X.; Liu, L. L.; Ding, M. W. Mater. Des. 2007, 28 (7), 2099–2105. https://doi.org/10.1016/j.matdes.2006.05.025.Suche in Google Scholar

17. Deng, J. X. Mater. Sci. Eng. A 2005, 408 (1–2), 227–233. https://doi.org/10.1016/j.msea.2005.07.029.Suche in Google Scholar

18. Lawn, B. R.; Marshall, D. B.; Anstis, G. R.; Dabbs, T. P. J. Mater. Sci. 1981, 16 (10), 2846–2854. https://doi.org/10.1007/bf02402849.Suche in Google Scholar

19. Leonardus, J. M. G.; Dortmans, G. D. J. Am. Ceram. Soc. 1991, 74 (9), 2293–2294. https://doi.org/10.1111/j.1151-2916.1991.tb08298.x.Suche in Google Scholar

20. Ritter, J. E.; Strzepa, P.; Jakus, K.; Rosenfeld, L.; Buckman, K. J. J. Am. Ceram. Soc. 1984, 67 (11), 769–774. https://doi.org/10.1111/j.1151-2916.1984.tb19515.x.Suche in Google Scholar

21. Slikkerveer, P. J.; Bouten, P. C. P.; in’t Veld, F. H.; Scholten, H. Wear 1998, 217 (2), 237–250. https://doi.org/10.1016/S0043-1648(98)00187-2.Suche in Google Scholar

22. Johnson, G. R.; Holmquist, T. J. J. Appl. Phys. 1999, 85 (12), 8060–8073. https://doi.org/10.1063/1.370643.Suche in Google Scholar

23. Holmquist, T. J.; Johnson, G. R. J. Appl. Phys. 2005, 97 (9), 093502. https://doi.org/10.1063/1.1881798.Suche in Google Scholar

Received: 2023-10-10
Accepted: 2024-02-05
Published Online: 2024-05-27
Published in Print: 2024-07-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2023-0298/html
Button zum nach oben scrollen