Startseite Catalysis effect of rare earth element Ce on paste boriding treatment of AISI 410 steel
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Catalysis effect of rare earth element Ce on paste boriding treatment of AISI 410 steel

  • Mingxiao Shi , Jingyong Li EMAIL logo , Weidong Mao , Shengliang Li , Zhidong Yang und Xiang Ma
Veröffentlicht/Copyright: 17. Mai 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Surface hardening techniques of steel are of great practical interest for applications in various industrial sectors. Boriding is one of the most economical choices. However, the chief deterrent to the widespread application of the technique is the difficulty in attaining a thick, dense boride layer. To solve this problem, a paste boriding process was performed on the surface of AISI 410 steel by introducing 6 wt.% CeO2 addition into the boriding agent. The microstructure of the boride layer is comprised of (Fe, Cr)B and (Fe, Cr)2B, which lie in the external and internal layers of the boride layer, respectively. CeO2 addition makes it possible to prepare a thick, dense boride layer on the surface of the steel substrate, thereby improving both wear and corrosion resistance of the steel. The catalysis mechanism of the rare earth element Ce can be ascribed to three aspects. First, CeO2 addition can take part in the chemical reactions involved in the boriding process to produce more active boron atoms. Second, Ce can facilitate the adsorption of active boron atoms onto the surface of the steel through preventing the formation of iron oxides on the steel’s surface. Third, Ce can diffuse into the surface of the steel and generate severe lattice distortion due to large atomic size, thereby promoting the boron diffusion. These results provide a high-quality, low-cost pathway for the surface hardening of steel in practical industrial applications.


Corresponding author: Jingyong Li, School of Materials Science and Engineering, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang, 212003, P.R. China, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no competing interests.

  4. Research funding: The authors would like to thank the Natural Science Research of the Jiangsu Higher Education Institutions of China (No. 22KJA460011) for the support.

  5. Data availability: Not applicable.

References

1. Liu, Y. R.; Ye, D.; Yong, Q. L.; Su, J.; Zhao, K. Y.; Jiang, W. J. Iron Steel Res. Int. 2011, 18 (11), 60–66. https://doi.org/10.13228/j.boyuan.issn1006-706x.2011.11.007.Suche in Google Scholar

2. Campos, I.; Ramírez, G.; Figueroa, U.; Martínez, J.; Morales, O. Appl. Surf. Sci. 2007, 253 (7), 3469–3475. https://doi.org/10.1016/j.apsusc.2006.07.046.Suche in Google Scholar

3. Dybkov, V. I.; Lengauer, W.; Barmak, K. J. Alloys Compd. 2005, 398 (1–2), 113–122. https://doi.org/10.1016/j.jallcom.2005.02.033.Suche in Google Scholar

4. Uslu, I.; Comert, H.; Ipek, M.; Ozdemir, O.; Bindal, C. Mater. Des. 2007, 28 (1), 55–61. https://doi.org/10.1016/j.matdes.2005.06.013.Suche in Google Scholar

5. Keddam, M.; Ortiz-Dominguez, M.; Elias-Espinosa, M.; Arenas-Flores, A.; Zuno-Silva, J.; Zamarripa-Zepeda, D.; Gomez-Vargas, O. A. Metall. Mater. Trans. A 2018, 49 (5), 1895–1907. https://doi.org/10.1007/s11661-018-4535-1.Suche in Google Scholar

6. Atik, E.; Yunker, U.; Meric, C. Tribol. Int. 2003, 36 (3), 155–161. https://doi.org/10.1016/s0301-679x(02)00069-5.Suche in Google Scholar

7. Kheyrodin, M.; Habibolahzadeh, A.; Mousavi, S. B. Prot. Met. Phys. Chem. Surf. 2017, 53 (1), 105–111. https://doi.org/10.1134/S2070205117010117.Suche in Google Scholar

8. Kartal, G.; Kahvecioglu, O.; Timur, S. Surf. Coat. Technol. 2006, 200 (11), 3590–3593. https://doi.org/10.1016/j.surfcoat.2005.02.210.Suche in Google Scholar

9. Rodríguez-Castro, G.; Campos-Silva, I.; Martínez-Trinidad, J.; Figueroa-López, U.; Melendez-Morales, D.; Vargas-Hernández, J. Adv. Mater. Res. 2009, 65, 63–68. https://doi.org/10.4028/www.scientific.net/AMR.65.63.Suche in Google Scholar

10. Tavakoli, H.; Mousavi Khoie, S. M. Mater. Chem. Phys. 2010, 124 (2–3), 1134–1138. https://doi.org/10.1016/j.matchemphys.2010.08.047.Suche in Google Scholar

11. Rodríguez-Castro, G.; Campos-Silva, I.; Chávez-Gutiérrez, E.; Martínez-Trinidad, J.; Hernández-Sánchez, E.; Torres-Hernández, A. Surf. Coat. Technol. 2013, 215, 291–299. https://doi.org/10.1016/j.surfcoat.2012.05.145.Suche in Google Scholar

12. Campos, I.; Oseguera, J.; Figueroa, U.; García, J. A.; Bautista, O.; Kelemenis, G. Mater. Sci. Eng. A 2003, 352 (1–2), 261–265. https://doi.org/10.1016/S0921-5093(02)00910-3.Suche in Google Scholar

13. Chen, T.; Koyama, S. Solid State Sci. 2020, 107, 106369–106373. https://doi.org/10.1016/j.solidstatesciences.2020.106369.Suche in Google Scholar

14. Makuch, N.; Dziarski, P. Surf. Coat. Technol. 2021, 405, 126508–126518. https://doi.org/10.1016/j.surfcoat.2020.126508.Suche in Google Scholar

15. Dziarski, P.; Makuch, N. Eng. Fract. Mech. 2022, 275, 108842–108859. https://doi.org/10.1016/j.engfracmech.2022.108842.Suche in Google Scholar

16. Yang, H. P.; Wu, X. C.; Min, Y. A.; Wu, T. R.; Gui, J. Z. Surf. Coat. Technol. 2013, 228, 229–233. https://doi.org/10.1016/j.surfcoat.2013.04.033.Suche in Google Scholar

17. Campos-Silva, I.; Ortiz-Dominguez, M.; Martínez-Trinidad, J.; López-Perrusquia, N.; Hernández-Sánchez, E.; Ramírez-Sandoval, G.; Escobar-Galindo, R. Defect Diffus. Forum 2010, 297–301 (2), 1284–1289. https://doi.org/10.4028/www.scientific.net/DDF.297-301.1284.Suche in Google Scholar

18. Ramirez, G.; Campos, I.; Balankin, A. Mater. Sci. Forum 2007, 553, 21–26. https://doi.org/10.4028/www.scientific.net/MSF.553.21.Suche in Google Scholar

19. Doñu Ruiz, M. A.; López Perrusquia, N.; Sánchez Huerta, D.; Torres San Miguel, C. R.; Urriolagoitia Calderón, G. M.; Cerillo Moreno, E. A.; Cortes Suarez, J. V. Thin Solid Films 2015, 596, 147–154. https://doi.org/10.1016/j.tsf.2015.07.086.Suche in Google Scholar

20. He, X. L.; Xiao, H. P.; Fevzi Ozaydin, M.; Balzuweit, K.; Liang, H. Surf. Coat. Technol. 2015, 263, 21–26. https://doi.org/10.1016/j.surfcoat.2014.12.071.Suche in Google Scholar

21. Lu, X. X.; Liang, C.; Gao, X. X.; An, J.; Yang, X. H. ISIJ Int. 2011, 51 (5), 799–804. https://doi.org/10.2355/isijinternational.51.799.Suche in Google Scholar

22. Zhang, Y. W.; Zheng, Q.; Fan, Y.; Mei, S. Q.; Lygdenov, B.; Guryev, A. Mater. Mech. Eng. 2021, 45 (7), 22–26. https://doi.org/10.11973/jxgccl202107005.Suche in Google Scholar

23. Bai, G. M. Met. Form. 2021, 1, 73–76. https://doi.org/10.3969/j.issn.1674-165X.2021.01.021.Suche in Google Scholar

24. Wang, L.; Wu, Y. M.; Bian, G. Y.; Xie, X. Y. Surf. Technol. 2019, 48 (2), 94–99. https://doi.org/10.16490/j.cnki.issn.1001-3660.2019.02.014.Suche in Google Scholar

25. Zhang, Y.; Bao, C. G.; Hou, S. Z. J. Xi’an Jiaotong Univ. 2014, 48 (10), 96–100. https://doi.org/10.7652/xjtuxb201410015.Suche in Google Scholar

26. Tian, X. Research on the Application of Pack Boronizing in Petroleum Machinery. MSc Thesis, Jilin University, China, 2008.Suche in Google Scholar

27. Wang, X. D. Study on the Boriding Process of AISI 410 Stainless Steel Paste and its Microstructure and Properties of Borided Layer. MSc Thesis, Jiangsu University of Science and Technology, China, 2022.Suche in Google Scholar

28. Han, D. W.; Zhang, J. X. Preparation and Display Technologies of Metallographic Samples; Press of Central South University, 2005.Suche in Google Scholar

29. Kariofillis, G. K.; Kiourtsidis, G. E.; Tsipas, D. N. Surf. Coat. Technol. 2006, 201 (1–2), 19–24. https://doi.org/10.1016/j.surfcoat.2005.10.025.Suche in Google Scholar

Received: 2022-09-13
Accepted: 2024-01-06
Published Online: 2024-05-17
Published in Print: 2024-06-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0394/pdf
Button zum nach oben scrollen