Startseite Complex permittivity and predominance of non-overlapping small-polaron tunneling conduction process in copper indium selenide compound
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Complex permittivity and predominance of non-overlapping small-polaron tunneling conduction process in copper indium selenide compound

  • Mohamed Essaleh ORCID logo EMAIL logo , Rachid Bouferra , Mohammed Mansori , Giovanni Marín , Syed M. Wasim und Dinesh Pratap Singh
Veröffentlicht/Copyright: 24. Januar 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper presents a study of the complex permittivity of n-type copper indium selenide semiconductor compound at low temperatures down to −175 °C. Alternating current with frequency varying between 20 Hz and 1 MHz is applied to the material in order to measure the dielectric constant ɛ′ and dielectric loss D = ɛ″/ɛ′. ɛ′ is found to decrease with temperature and frequency, whereas D decreases with frequency and increases with temperature. The experimental data of ɛ″ agree with the expression ε = A ω m ω , T , where the frequency exponent m(ω, T), calculated through the relation m ω , T = ln ε / ln ω T , shows a frequency and temperature dependence. The data are analyzed in light of existing theoretical models.


Corresponding author: Mohamed Essaleh, STWMaterial-Technology, Laboratoire de Géosciences, Faculty of Sciences and Technology, Géonvironnement et Génie Civil. Cadi-Ayyad University, B.P.549, 40000, Marrakech, Morocco, E-mail:

Acknowledgments

The authors are extremely grateful to Professor Dr. Dennis Mitchell, for critically revising the manuscript.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflict of interest.

  4. Data availability: The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

1. Marín, G., Wasim, S. M., Rincón, C., Essaleh, L. Mater. Lett. 2015, 157, 70. https://doi.org/10.1016/j.matlet.2015.05.025.Suche in Google Scholar

2. Biswas, A., Sil, S., Dey, A., Datta, J., Das, D., Ray, P. P. J. Phys. Chem. Solid. 2021, 150, 109878. https://doi.org/10.1016/j.jpcs.2020.109878.Suche in Google Scholar

3. Ando, Y., Khatri, I., Matsumori, H., Sugiyama, M., Nakada, T. Phys. Status Solidi A 2019, 216, 1900164. https://doi.org/10.1002/pssa.201900164.Suche in Google Scholar

4. Raguse, J. M., Muzzillo, C. P., Sites, J. R., Mansfield, L. IEEE J. Photovoltaics 2016, 7, 303. https://doi.org/10.1109/JPHOTOV.2016.2621343.Suche in Google Scholar

5. Lanfredi, S., Saia, P. S., Lebullenger, R., Hernandes, A. C. Solid State Ionics 2002, 146, 329. https://doi.org/10.1016/S0167-2738(01)01030-X.Suche in Google Scholar

6. Lakhdar, M. H., Ouni, B., Amlouk, M. Mater. Sci. Semicond. Process. 2014, 19, 32. https://doi.org/10.1016/j.mssp.2013.11.038.Suche in Google Scholar

7. Marín, G., Essaleh, L., Amhil, S., Wasim, S. M., Bouferra, R., Zoubir, A., El Alaoui El Moujahid, M. E., Singh, D. P., Vivas, L. Physica B 2020, 593, 412283. https://doi.org/10.1016/j.physb.2020.412283.Suche in Google Scholar

8. Lahlali, S., Essaleh, L., Belaqziz, M., Chehouani, H., Alimoussa, A., Djessas, K., Viallet, B., Gauffier, J. L., Cayez, S. Physica B 2017, 526, 54. https://doi.org/10.1016/j.physb.2017.09.069.Suche in Google Scholar

9. Elliot, S. R. Solid State Ionics 1988, 27, 131. https://doi.org/10.1016/0167-2738(88)90003-3.Suche in Google Scholar

10. Essaleh, L., Amhil, S., Wasim, S. M., Marín, G., Choukri, E., Hajji, L. Physica E 2018, 99, 37. https://doi.org/10.1016/j.physe.2018.01.012.Suche in Google Scholar

11. Atkinson, A., Taylor, R. I. Philos. Mag. A 1981, 43, 979. https://doi.org/10.1080/01418618108239506.Suche in Google Scholar

12. Landauer, R. J. Appl. Phys. 1952, 23, 779. https://doi.org/10.1063/1.1702301.Suche in Google Scholar

13. Bauerle, J. E. J. Phys. Chem. Solid. 1969, 30, 2657. https://doi.org/10.1016/0022-3697(69)90039-0.Suche in Google Scholar

14. Maier, J. Ber. Bunsen-Ges. Phys. Chem. 1986, 90, 26. https://doi.org/10.1002/bbpc.19860900105.Suche in Google Scholar

15. Rincón, C., Wasim, S. M., Marín, G., Márquez, R., Nieves, L., Pérez, G. S. J. Appl. Phys. 2001, 90, 4423. https://doi.org/10.1063/1.1405144.Suche in Google Scholar

16. Saradhi, B. V. B., Srini, K., Prasad, G., Suryanarayana, S. V., Bhimasankaram, T. Mater. Sci. Eng. B 2003, 98, 10. https://doi.org/10.1016/S0921-5107(02)00576-7.Suche in Google Scholar

17. von Hauff, E. J. Phys. Chem. C 2019, 123, 11329. https://doi.org/10.1021/acs.jpcc.9b00892.Suche in Google Scholar

18. Behera, B., Nayak, P., Choudhary, R. N. P. Mater. Chem. Phys. 2006, 100, 138. https://doi.org/10.1016/j.matchemphys.2005.12.022.Suche in Google Scholar

19. Giuntini, J. C., Zanchetta, J. V., Jullien, D., Eholie, R., Houenou, P. J. Non-Cryst. Solids 1981, 45, 57. https://doi.org/10.1016/0022-3093(81)90089-2.Suche in Google Scholar

20. Chithambaram, V., Jerome Das, S., Krishnan, S. J. Alloys Compd. 2011, 509, 4543. https://doi.org/10.1016/j.jallcom.2011.01.091.Suche in Google Scholar

21. Zaitouni, H., Hajji, L., Choukri, E., Mezzane, D., Abkhar, Z., Essaleh, L., Alimoussa, A., El Marssi, M., Luk’yanchuk, I. A. Superlattice. Microst. 2019, 127, 176. https://doi.org/10.1016/j.spmi.2017.11.060.Suche in Google Scholar

22. Sinclair, D. C., West, A. R. J. Appl. Phys. 1989, 66, 3850. https://doi.org/10.1063/1.344049.Suche in Google Scholar

23. Sen, S., Pramanik, P., Choudhary, R. N. P. Appl. Phys. A 2006, 82, 549. https://doi.org/10.1007/s00339-005-3330-1.Suche in Google Scholar

24. Luo, T., Liu, Z., Zhang, F., Li, Y. J. Appl. Phys. 2018, 123, 124108. https://doi.org/10.1063/1.5013264.Suche in Google Scholar

25. Mustafaeva, S. N., Asadov, S. M., Guseinov, D. T., Kasimoglu, I. Semicond. Phys. Quantum Electron. 2016, 19, 201. https://doi.org/10.15407/spqeo19.02.201.Suche in Google Scholar

Received: 2022-02-19
Accepted: 2022-08-29
Published Online: 2023-01-24
Published in Print: 2023-02-23

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0091/pdf
Button zum nach oben scrollen