Startseite Thermal Natural Convection Analysis of Olive Oil in Different Cookware Materials for Induction Stoves
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Thermal Natural Convection Analysis of Olive Oil in Different Cookware Materials for Induction Stoves

  • J. P. Kastillo , J. Martínez-Gómez EMAIL logo , S. P. Villacis und A. J. Riofrio
Veröffentlicht/Copyright: 9. Februar 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This manuscript describes the analysis of temperature and the distribution of natural convection flow of three different cookware materials composed of stainless steel, aluminum and enameled iron, when heating olive oil. A Computational Fluid Dynamic (CFD) software, called COMSOL Multiphysics©, has been used to analyze the heat transfer process for this study. In addition, a thermographic camera and a particle tracer were employed to compare the measurements of temperature, heat transfer and flow velocity, obtained from the CFD analysis. The results demonstrated that the enameled iron was the best choice of cookware material for induction stoves, as with the increment of oil temperature, this material had the biggest contrails and oil velocity convection flow in the center of the cookware.

Nomenclature

NomenclatureNomenclature
uvelocity of the fieldHmagnetic field (A/m)
ppressure (N/m2)Jelectric current density (A/m2)
Fvolume Forcettime (s)
ρdensity of the fluid (kg/m3)Ttemperature (°C)
ηdynamic viscosityBmagnetic induction (N s/C m)
vector differential operatorDelectric flux density (C/m2)
Amagnetic vector potential (V s/m)Eelectric field (V/m)
Cpheat capacity of the fluidQsource term
εopermittivity of vacuumμopermeability of vacuum
σelectrical conductivityNnumber of turns of the coil
Atotal cross area of the coilIcoiltotal current
uvelocity field component in axis xvvelocity field component in axis y

References

1. Wong KK. Experimental study of induction cooker fire hazard. Procedia Eng 2013;52:13–22.10.1016/j.proeng.2013.02.098Suche in Google Scholar

2. Kawakami H, Llave Y, Fukuoka M, Sakai N. CFD analysis of the convection flow in the pan during induction heating and gas range heating. J Food Eng 2013;116(3):726–736.10.1016/j.jfoodeng.2013.01.012Suche in Google Scholar

3. Sung YT, Hwang SJ, Lee HH, Huang DY. Study on induction heating coil for uniform mold cavity surface heating. Adv Mech Eng 2014;6:349078.10.1155/2014/349078Suche in Google Scholar

4. Villacís S, Martínez J, Riofrío AJ, Carrión DF. Energy efficiency analysis of different materials for cookware commonly used in induction cookers. Energy Procedia 2015;75:25–930.10.1016/j.egypro.2015.07.252Suche in Google Scholar

5. Martínez-Gómez J, Ibarra D, Villacis S, Cuji P, Cruz PR. Analysis of LPG, electric and induction cookers during cooking typical Ecuadorian dishes into the national efficient cooking program. Food Policy 2016;59:88–102.10.1016/j.foodpol.2015.12.010Suche in Google Scholar

6. Ghani AGA, Farid MM, Chen XD, Richards P. Thermal sterilization of canned food in a 3-D pouch using computational fluid dynamics. J Food Eng 2001;48:147–156.10.1016/S0260-8774(00)00150-3Suche in Google Scholar

7. Gandhi MS, Sathe MJ, Joshi JB, Vijayan PK. Two phase natural convection: CFD simulations and PIV measurement. Chem Eng Sci 2011;66:3152–3171.10.1016/j.ces.2011.02.060Suche in Google Scholar

8. Erdogdu F. Computational fluid dynamics for optimization in food processing. Erdogdu F, editors. Optimization in Food Engineering. Boca Raton, FL: CRC Press Taylor & Francis Group, 2009:219–227.Suche in Google Scholar

9. Farinu A. Heat and mass transfer analogy under turbulent conditions of fryingUniversity of Saskatchewam Saskatoon, 2001.Suche in Google Scholar

10. Hoang ML, Verbonen P, De Baerdemaeker J, Nicolaï BM. Analysis of the air flow in a cold store by means of computational fluid dynamics. Int J Refrig 2000;23:127–140.10.1016/S0140-7007(99)00043-2Suche in Google Scholar

11. Mirade PS, Daudin JD. Numerical simulation and validation of the air velocity field in a meat chiller. Int J Appl Sci Comput 1998;5(1):11–24.Suche in Google Scholar

12. Kumar A, Bhattacharya M. Transient temperature and velocity profiles in a canned non-Newtonian liquid food during sterilization in a still-cook retort. Int J Heat Mass Transfe 1991;34:1083–1096.10.1016/0017-9310(91)90018-ASuche in Google Scholar

13. Zorrilla SE, Singh RP. Heat transfer in double-sided cooking of meat patties considering two-dimensional geometry and radial 365 shrinkage. J Food Eng 2003;57:57–65.10.1016/S0260-8774(02)00273-XSuche in Google Scholar

14. Feyissa AH, Gernaey KV, Ashokkumar S, Adler-Nissen J. Modelling of coupled heat and mass transfer during a contact baking process. J Food Eng 2011;106:228–235.10.1016/j.jfoodeng.2011.05.014Suche in Google Scholar

15. Sanz-Serrano F, Sagues C, Llorente S. Inverse modeling of pan heating in domestic cookers. Appl Thermal Eng 2016;92:137–148.10.1016/j.applthermaleng.2015.09.084Suche in Google Scholar

16. Kang CG, Seo PK, Jung HK. Numerical analysis by new proposed coil design method in induction heating process for semi-solid forming and its experimental verification with globalization evaluation. Mater Sci Eng 2003;341(1):121–138.10.1016/S0921-5093(02)00213-7Suche in Google Scholar

17. Huang MS, Huang YL. Effect of multi-layered induction coils on efficiency and uniformity of surface heating. Int J Heat Mass Transfer 2010;53(11):2414–2423.10.1016/j.ijheatmasstransfer.2010.01.042Suche in Google Scholar

18. Naar R, Bay F. Numerical optimization for induction heat treatment processes. Appl Math Model 2013;37(4):2074–2085.10.1016/j.apm.2012.04.058Suche in Google Scholar

19. Kranjc M, Zupanic A, Miklavcic D, Jarm T. Numerical analysis and thermographic investigation of induction heating. Int J Heat Mass Transfer 2010;53:3585–3591.10.1016/j.ijheatmasstransfer.2010.04.030Suche in Google Scholar

20. Allouche Y, Jiménez A, Gaforio JJ, Uceda M, Beltrán G. How heating affects extra virgin olive oil quality indexes and chemical composition. J Agric Food Che; 2007 55(23):9646–9654.10.1021/jf070628uSuche in Google Scholar

21. Orozco M, Martínez J, Riofrío A, Vaca D, Carrión D. Estudio de ensayos de eficiencia energética, concavidad, convexidad y rugosidad en menaje para cocinas de inducción. Memorias del Congreso latinoamericano de ingeniería mecánica COLIM 2014;8:255–61.Suche in Google Scholar

22. Chauhan A, Vaish R. Magnetic material selection using multiple attribute decision making approach. Mater Des 2012;36:1–5.10.1016/j.matdes.2011.11.021Suche in Google Scholar

23. Callister WD, Rethwisch DG. Materials science and engineering: an introduction Vol. 7. New York: Wiley, 2007:665–715.Suche in Google Scholar

24. Martínez J. A multi-criteria decision analysis (MCDA) for materials selection of a magnetic application. J Avances 2015;7(1):C1–C8.Suche in Google Scholar

25. Multiphysics, COMSOL.Comsol multiphysics user guide (version 4.3 a) 2012;AB: 1-40.Suche in Google Scholar

26. Cai L, White RE. Mathematical modeling of a lithium ion battery with thermal effects in COMSOL Inc. Multiphysics (MP) software. J Power Sources 2011;196(14):5985–5989.10.1016/j.jpowsour.2011.03.017Suche in Google Scholar

27. Vazquez N, LLop J. Development of new analogues D2 receptor ligands which incorporate a dicarbacloso dodecaborano unit: Carbon-11 labeling and ex vivo and in vivo. U. Pais Vasco 2012;:1–30.Suche in Google Scholar

28. Pan Z, Singh RP, Rumsey TR. Predictive modeling of contact-heating process for cooking a hamburger patty. J Food Eng 2000;46(1):9–19.10.1016/S0260-8774(00)00063-7Suche in Google Scholar

29. Sedighi M, Dardashti BN. Heat transfer modeling in multilayer cookware using finite element method. Int J Sci Eng Investig 2012;1(1):190–196.Suche in Google Scholar

Published Online: 2017-2-9
Published in Print: 2017-3-1

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijfe-2016-0065/html
Button zum nach oben scrollen