Startseite MCT1, MCT4 and CD147 expression and 3-bromopyruvate toxicity in colorectal cancer cells are modulated by the extracellular conditions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

MCT1, MCT4 and CD147 expression and 3-bromopyruvate toxicity in colorectal cancer cells are modulated by the extracellular conditions

  • Joana Pereira-Vieira , João Azevedo-Silva ORCID logo , Ana Preto , Margarida Casal und Odília Queirós EMAIL logo
Veröffentlicht/Copyright: 14. Februar 2019

Abstract

Monocarboxylate transporters (MCTs) inhibition leads to disruption in glycolysis, induces cell death and decreases cell invasion, revealing the importance of MCT activity in intracellular pH homeostasis and tumor aggressiveness. 3-Bromopyruvate (3BP) is an anti-tumor agent, whose uptake occurs via MCTs. It was the aim of this work to unravel the importance of extracellular conditions on the regulation of MCTs and in 3BP activity. HCT-15 was found to be the most sensitive cell line, and also the one that presented the highest basal expression of both MCT1 and of its chaperone CD147. Glucose starvation and hypoxia induced an increased resistance to 3BP in HCT-15 cells, in contrast to what happens with an extracellular acidic pH, where no alterations in 3BP cytotoxicity was observed. However, no association with MCT1, MCT4 and CD147 expression was observed, except for glucose starvation, where a decrease in CD147 (but not of MCT1 and MCT4) was detected. These results show that 3BP cytotoxicity might include other factors beyond MCTs. Nevertheless, treatment with short-chain fatty acids (SCFAs) increased the expression of MCT4 and CD147 as well as the sensitivity of HCT-15 cells to 3BP. The overall results suggest that MCTs influence the 3BP effect, although they are not the only players in its mechanism of action.

Acknowledgments

To Andre Goffeau, who passed away on April 2nd, 2018, in memoriam. He was always a very active collaborator in this project and a great contributor to the results herein presented. He had a dream of finding a cure for cancer and had a great hope in the use of 3BP. This work was supported by the strategic programme UID/BIA/04050/2013 (POCI-01-0145-FEDER-007569) funded by national funds through the FCT I.P., by the Ministério da Ciência, Tecnologia e Ensino Superior (MCTES) by the ERDF through the COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI) and by an internal CESPU project 02-GBMC-CICS-2011 MetabRes_CESPU_2017.

  1. Conflict of interest statement: The authors declare no conflict of interest.

References

Al Okail, M.S. (2010). Cobalt chloride, a chemical inducer of hypoxia-inducible factor-1α in U251 human glioblastoma cell line. J. Saudi Chem. Soc. 14, 197–201.10.1016/j.jscs.2010.02.005Suche in Google Scholar

Azevedo-Silva, J., Queirós, O., Ribeiro, A., Baltazar, F., Young, K.H., Pedersen, P.L., Preto, A., and Casal, M. (2015). The cytotoxicity of 3-bromopyruvate in breast cancer cells depends on extracellular pH. Biochem. J. 467, 247–258.10.1042/BJ20140921Suche in Google Scholar PubMed

Azevedo-Silva, J., Queirós, O., Baltazar, F., Ułaszewski, S., Goffeau, A., Ko, Y.H., Pedersen, P.L., Preto, A., and Casal, M. (2016). The anticancer agent 3-bromopyruvate: a simple but powerful molecule taken from the lab to the bedside. J. Bioenerg. Biomembr. 48, 349–362.10.1007/s10863-016-9670-zSuche in Google Scholar PubMed

Bao, W., Chen, M., Zhao, X., Kumar, R., Spinnler, C., Thullberg, M., Issaeva, N., Selivanova, G., and Stromblad, S. (2011). PRIMA-1Met/APR-246 induces wild-type p53-dependent suppression of malignant melanoma tumor growth in 3D culture and in vivo. Cell Cycle 10, 301–307.10.4161/cc.10.2.14538Suche in Google Scholar PubMed

Berg, K.C.G., Eide, P.W., Eilertsen, I.A., Johannessen, B., Bruun, J., Danielsen, S.A., Bjornslett, M., Meza-Zepeda, A., Eknaes, M., Lind, G.E., et al. (2017). Multi-omics of 34 colorectal cancer cell lines – a resource for biomedical studies. Mol. Cancer 116, 1–16.10.1186/s12943-017-0691-ySuche in Google Scholar PubMed PubMed Central

Bhardwaj, V., Rizvi, N., Lai, M.B., Lai, J.C.K., and Bhushan, A. (2010). Glycolytic enzyme inhibitors affect pancreatic cancer survival by modulating its signaling and energetics. Anticancer Res. 30, 743–749.Suche in Google Scholar

Birsoy, K., Wang, T., Possemato, R., Yilmaz, O.H., Kock, C.E., Chen, W., Hutchins, A.W., Gultekin, Y., Peterson, T.R., Carette, J.E.C., et al. (2013). MCT1-mediated transport of a toxic molecule is an effective strategy for targeting glycolytic tumors. Nat. Genet. 45, 104–108.10.1038/ng.2471Suche in Google Scholar PubMed PubMed Central

Borthakur, A., Saksena, S., Gill, R.K., Alrefaii, A., Ramaswamy, K., and Dudeja, P.K. (2008). Regulation of monocarboxylate transporter 1 (MCT1) promoter by butyrate in human intestinal epithelial cells: involvement of NF-κB pathway. J. Cell Biochem. 103, 1452–1463.10.1002/jcb.21532Suche in Google Scholar PubMed PubMed Central

Canani, R.B., Costanzo, M.D., Leone, L., Pedata, M., Meli, R., and Calignano, A. (2011). Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J. Gastroenterol. 17, 1519–1528.10.3748/wjg.v17.i12.1519Suche in Google Scholar PubMed PubMed Central

Damaghi, M., Wojtkowiak, J.W., and Gillies, R.J. (2013). pH sensing and regulation in cancer. Front. Physiol. 4, 1–10.10.3389/fphys.2013.00370Suche in Google Scholar PubMed PubMed Central

DeBerardinis, R.J. and Chandel, N.S. (2016). Fundamentals of cancer metabolism. Sci. Adv. 2, 1–18.10.1126/sciadv.1600200Suche in Google Scholar PubMed PubMed Central

Donohoe, D.R., Collins, L.B., Wali, A., Bigler, R., Sun, W., and Bultman, S.J. (2012). The Warburg effect dictates the mechanism of butyrate mediated histone acetylation and cell proliferation. Mol. Cell 48, 612–626.10.1016/j.molcel.2012.08.033Suche in Google Scholar PubMed PubMed Central

Donohoe, D.R., Holley, D., Collins, L.B., Montgomery, S.A., Whitmore, A.C., Hillhouse, A., Curry, K.P., Renner, S.W., Greenwalt, A., Ryan, E.P., et al. (2014). A gnotobiotic mouse model demonstrates that dietary fiber protects against colorectal tumorigenesis in a microbiota- and butyrate-dependent manner. Cancer Discov. 4, 1387–1397.10.1158/2159-8290.CD-14-0501Suche in Google Scholar PubMed PubMed Central

Enerson, B.E. and Drewes, L.R. (2003). Molecular features, regulation, and function of monocarboxylate transporters: implications for drug delivery. J. Pharm. Sci. 92, 1531–1544.10.1002/jps.10389Suche in Google Scholar PubMed

Fang, J., Quinones, Q.J., Holman, T.L., Morowitz, M.J., Wang, Q., Zhao, H., Sivo, F., Maris, J.M., and Wahl, M.L. (2006). The H+-linked monocarboxylate transporter (MCT1/SLC16A1): a potential therapeutic target for high-risk neuroblastoma. Mol. Pharmacol. 70, 2108–2115.10.1124/mol.106.026245Suche in Google Scholar PubMed

Fantin, V.R., St-Pierre, J., and Leder, P. (2006). Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9, 425–434.10.1016/j.ccr.2006.04.023Suche in Google Scholar PubMed

Ferro, S., Azevedo-Silva, J., Casal, M., Côrte-Real, M., Baltazar, F., and Preto, A. (2016). Characterization of acetate transport in colorectal cancer cells and potential therapeutic implications. Oncotarget 1, 1–15.10.18632/oncotarget.12156Suche in Google Scholar PubMed PubMed Central

Gallagher, S.M., Castorino, J.J., Wang, D., and Philp, N.J. (2007). Monocarboxylate transporter 4 regulates maturation and trafficking of CD147 to the plasma membrane in the metastatic breast cancer cell line MDA-MB-231. Cancer Res. 67, 4182–4189.10.1158/0008-5472.CAN-06-3184Suche in Google Scholar PubMed

Ganapathy-kanniappan, S. and Geschwing, J-F.H. (2013). Tumor glycolysis as a target for cancer therapy. BioMed. Cent. 12, 1–11.10.1186/1476-4598-12-152Suche in Google Scholar

Gatenby, R.A. and Gillies, R.J. (2004). Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4, 891–899.10.1038/nrc1478Suche in Google Scholar PubMed

Grass, G.D. and Toole, B.P. (2016). How, with whom and when: an overview of CD147-mediated regulatory networks influencing matrix metalloproteinase activity. Biosci. Rep. 36, 1–16.10.1042/BSR20150256Suche in Google Scholar PubMed PubMed Central

Greaves, M. and Maley, C.C. (2012). Clonal evolution in cancer. Nature 481, 306–313.10.1038/nature10762Suche in Google Scholar PubMed PubMed Central

Hadjiagapiou, C., Schmidt, L., Dudeja, P.K., Layden, T.J., and Ramaswamy, K. (2000). Mechanism(s) of butyrate transport in Caco-2 cells: role of monocarboxylate transporter 1. Am. J. Physiol. Gastrointest. Liver Physiol. 279, 775–780.10.1152/ajpgi.2000.279.4.G775Suche in Google Scholar PubMed

Halestrap, A.P. (2012). The monocarboxylate transporter family-structure and functional characterization. IUBMB Life 64, 1–9.10.1002/iub.573Suche in Google Scholar PubMed

Halestrap, A.P. and Meredith, D. (2004). The SLC16 gene family – From monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflüger’s Arch. Eur. J. Physiol. 447, 619–628.10.1007/s00424-003-1067-2Suche in Google Scholar PubMed

Halestrap, A.P. and Wilson, M.C. (2012). The monocarboxylate transporter family-role and regulation. IUBMB Life 64, 109–119.10.1002/iub.572Suche in Google Scholar PubMed

Hanahan, D. and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646–674.10.1016/j.cell.2011.02.013Suche in Google Scholar PubMed

Ho, N., Morrison, J., Silva, A., and Coomber, B.L. (2016). The effect of 3-bromopyruvate on human colorectal cancer cells is dependent on glucose concentration but not hexokinase II expression. Biosci. Rep. 36, 1–13.10.1042/BSR20150267Suche in Google Scholar PubMed PubMed Central

Ippolito, J.E., Brandenburg, M.W., Ge, X., Crowley, J.R., Kirmess, K.M., Som, A., D’Avignon, D.A., Arbeit, J.M., Achilefu, S., Yarasheski, K.E., et al. (2016). Extracellular pH modulates neuroendocrine prostate cancer cell metabolism and susceptibility to the mitochondrial inhibitor niclosamide. PLoS One 11, 1–26.10.1371/journal.pone.0159675Suche in Google Scholar PubMed PubMed Central

Jan, G., Belzacq, A.S., Haouzi, D., Rouault, A., Métivier, D., Kroemer, G., and Brenner, C. (2002). Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria. Cell Death Differ. 9, 179–188.10.1038/sj.cdd.4400935Suche in Google Scholar PubMed

Kato, Y., Ozawa, S., Miyamoto, C., Maehata, Y., Suzuki, A., Maeda, T., and Baba, Y. (2013). Acidic extracellular microenvironment and cancer. Cancer Cell Int. 13, 1–8.10.1186/1475-2867-13-89Suche in Google Scholar PubMed PubMed Central

Ke, X., Fei, F., Chen, Y., Xu, L., Zhang, Z., Huang, Q., Zhang, H., Yang, H., Chen, Z., and Xing, J. (2012). Hypoxia upregulates CD147 through a combined effect of HIF-1α and Sp1 to promote glycolysis and tumor progression in epithelial solid tumors. Carcinogenesis 33, 1598–1607.10.1093/carcin/bgs196Suche in Google Scholar PubMed PubMed Central

Keku, T.O., Dulal, S., Deveaux, A., Jovov, B., and Han, X. (2015). The gastrointestinal microbiota and colorectal cancer. Am. J. Physiol. 308, 351–363.10.1152/ajpgi.00360.2012Suche in Google Scholar

Kennedy, K.M. and Dewhirst, M.W. (2010). Tumor metabolism of lactate: the influence and therapeutic potential for MCT and CD147 regulation. Future Oncol. 6, 1–32.10.2217/fon.09.145Suche in Google Scholar

Kirk, P., Wilson, M.C., Heddle, C., Brown, M.H., Barclay, A.N., and Halestrap, A.P. (2000). CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. EMBO J. 19, 3896–3904.10.1093/emboj/19.15.3896Suche in Google Scholar

Ko, Y.H., Pedersen, P.L., and Geschwind, J.F. (2001). Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase. Cancer Lett. 173, 83–91.10.1016/S0304-3835(01)00667-XSuche in Google Scholar

Kong, L.M., Liao, C.G., Fei, F., Guo, X., Xing, J.L., and Chen, Z.N. (2010). Transcription factor Sp1 regulates expression of cancer-associated molecule CD147 in human lung cancer. Cancer Sci. 101, 1463–1470.10.1111/j.1349-7006.2010.01554.xSuche in Google Scholar PubMed

Kroemer, G. and Pouyssegur, J. (2008). Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13, 472–82.10.1016/j.ccr.2008.05.005Suche in Google Scholar PubMed

Liu, T., Li, J., Liu, Y., Xiao, N., Suo, H., Xie, K., Yang, C., and Wu, C. (2012). Short-Chain fatty acids suppress lipopolysaccharide-Induced production of nitric oxide and proinflammatory cytokines through inhibition of NF-κB Pathway in RAW264.7 cells. Inflammation 35, 1676–1684.10.1007/s10753-012-9484-zSuche in Google Scholar PubMed

Marques, C., Oliveira, C.S.F., Alves, S., Chaves, S.R., Coutinho, O.P., Côrte-Real, M., and Preto, A. (2013). Acetate-induced apoptosis in colorectal carcinoma cells involves lysosomal membrane permeabilization and cathepsin D release. Cell Death Dis. 4, 1–11.10.1038/cddis.2013.29Suche in Google Scholar PubMed PubMed Central

Miranda-Gonçalves, V., Baltazar, F., and Reis, R.M. (2015). Brain tumor metabolism – unraveling its role in finding new therapeutic targets. In: Molecular Considerations and Evolving Surgical Management Issues in the Treatment of Patients with a Brain Tumor, Chapter 4, T. Lichtor, eds. (London, UK: IntechOpen), pp. 83–102.10.5772/59606Suche in Google Scholar

Morris, M.E. and Felmlee, M.A. (2008). Overview of the proton-coupled MCT (SLC16A) family of transporters: characterization, function and role in the transport of the drug of abuse γ-hydroxybutyric acid. AAPS J. 10, 311–321.10.1208/s12248-008-9035-6Suche in Google Scholar PubMed PubMed Central

Nakai, M., Chen, L., and Nowak, R.A. (2006). Tissue distribution of basigin and monocarboxylate transporter 1 in the adult male mouse: a study using the wild type and basigin gene knockout mice. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 40, 1301–1315.10.1002/ar.a.20320Suche in Google Scholar PubMed PubMed Central

Nakajima, E.C. and Van Houten, B. (2013). Metabolic symbiosis in cancer: refocusing the Warburg lens. Mol. Carcinog. 52, 329–337.10.1002/mc.21863Suche in Google Scholar PubMed

Nelson, D.L. and Cox, M.M. (2004). Lehninger Principles of Biochemistry, 4th Ed. Chapter 14 (New York: W. H. Freeman), pp. 523–525.Suche in Google Scholar

Ngo, D.C., Ververis, K., Tortorella, S.M., and Karagiannis, T.C. (2015). Introduction to the molecular basis of cancer metabolism and the Warburg effect. Mol. Biol. Rep. 42, 819–823.10.1007/s11033-015-3857-ySuche in Google Scholar PubMed

Oliveira, C.S.F., Pereira, H., Alves, S., Castro, L., Baltazar, F., Chaves, S.R., Preto, A., and Côrte-Real, M. (2015). Cathepsin D protects colorectal cancer cells from acetate-induced apoptosis through autophagy independent degradation of damaged mitochondria. Cell Death Dis. 6, 1–11.10.1038/cddis.2015.157Suche in Google Scholar PubMed PubMed Central

Orue, A., Chavez, V., Strasberg-Rieber, M., and Rieber, M. (2016). Hypoxic resistance of KRAS mutant tumor cells to 3-Bromopyruvate is counteracted by Prima-1 and reversed by N-acetylcysteine. BMC Cancer 16, 1–16.10.1186/s12885-016-2930-9Suche in Google Scholar PubMed PubMed Central

Parks, S.K., Cormerais, Y., Marchiq, I., and Pouyssegur, J. (2016). Hypoxia optimises tumour growth by controlling nutrient import and acidic metabolite export. Mol. Aspects Med. 47–48, 3–14.10.1016/j.mam.2015.12.001Suche in Google Scholar PubMed

Pérez-Escuredo, J., Hée, V.F., Sboarina, M., Falces, J., Payen, V.L., Pellerin, L., and Sonveaux, P. (2016). Monocarboxylate transporters in the brain and in cancer. Biochim. Biophys. Acta 1863, 2481–2497.10.1016/j.bbamcr.2016.03.013Suche in Google Scholar PubMed PubMed Central

Pinheiro, C., Longatto-Filho, A., Azevedo-Silva, J., Casal, M., Schmitt, F.C., and Baltazar, F. (2012). Role of monocarboxylate transporters in human cancers: state of the art. J. Bioenerg. Biomembr. 44, 127–139.10.1007/s10863-012-9428-1Suche in Google Scholar PubMed

Porporato, P.E., Dhup, S., Dadhich, R.K., Copetti, T., and Sonveaux, P. (2011). Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Front Pharmacol. 2, 1–18.10.3389/fphar.2011.00049Suche in Google Scholar PubMed PubMed Central

Queirós, O., Preto, A., Pacheco, A., Pinheiro, C., Azevedo-Silva, J., Moreira, R., Pedro, M., Ko, Y.H., Pederson, P.L., Baltazar, F., et al. (2012). Butyrate activates the monocarboxylate transporter MCT4 expression in breast cancer cells and enhances the antitumor activity of 3-bromopyruvate. J Bioenerg Biomembr. 44, 141–153.10.1007/s10863-012-9418-3Suche in Google Scholar PubMed

Seyfried, T.N. and Shelton, L.M. (2010). Cancer as a metabolic disease. Nutrit. Metab. 7, 1–22.10.1002/9781118310311Suche in Google Scholar

Shanware, N.P., Mullen, A.R., DeBerardinis, R.J., and Abraham, R.T. (2011). Glutamine: pleiotropic roles in tumor growth and stress resistance. J. Mol. Med. 89, 229–236.10.1007/s00109-011-0731-9Suche in Google Scholar PubMed

Son, J., Lyssiotis, C.A., Ying, H., Wang, X., Hua, S., Ligorio, M., Perera, R.M., Ferrone, C.R., Mullarky, E., Shuh-Chang, N., et al. (2013). Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101–105.10.1038/nature12040Suche in Google Scholar PubMed PubMed Central

Sonveaux, P., Végran, F., Schroeder, T., Wergin, M.C., Verrax, J., Rabbani, Z.N., DeSaedeleer, C.J., Kennedy, K.M., Diepart, C., Jordan, B.F., et al. (2008). Targeting lactate-fueled respiration selectivelt kills hypoxic tumor cells in mice. J. Clin. Invest. 118, 1–13.10.1172/JCI36843Suche in Google Scholar

Swietach, P., Vaughan-Jones, R.D., and Harris, A.L. (2007). Regulation of tumor pH and the role of carbonic anhydrase 9. Cancer Metastasis. Rev. 26, 299–310.10.1007/s10555-007-9064-0Suche in Google Scholar PubMed

Trainer, D.L., Kline, T., McCabe, F.L., Faucette, L.F., Field, J., Chaikin, M., Anzano, M., Rieman, D., Hoffstein, S., Li, D-J., et al. (1988). Biological characterization and oncogene expression in human colorectal carcinoma cell lines. Int. J. Cancer 41, 287–296.10.1002/ijc.2910410221Suche in Google Scholar PubMed

Ullah, M.S., Davies, A.J., and Halestrap, A.P. (2006). The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1α-dependent mechanism. J. Biol. Chem. 281, 9030–9037.10.1074/jbc.M511397200Suche in Google Scholar PubMed

Vander Heiden, M., Cantley, L., and Thompson, C. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033.10.1126/science.1160809Suche in Google Scholar PubMed PubMed Central

Walters, D.K., Arendt, B.K., and Jelinek, D.F. (2013). CD147 regulates the expression of MCT1 and lactate export in multiple myeloma cells. Cell Cycle 12, 3175–3183.10.4161/cc.26193Suche in Google Scholar PubMed PubMed Central

Warburg, O. (1956). On the origin of cancer cells on the origin of cancer. Science 123, 309–14.10.1126/science.123.3191.309Suche in Google Scholar PubMed

Xia, Y., Choi, H.K., and Lee, K. (2012). Recent advances in hypoxia-inducible factor (HIF)-1 inhibitors. Eur. J. Med. Chem. 49, 24–40.10.1016/j.ejmech.2012.01.033Suche in Google Scholar PubMed

Xu, R.H., Pelicano, H., Zhou, Y., Carew, J.S., Feng, L., Bhalla, K.N., Keating, M.J., and Huang, P. (2005). Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res. 65, 613–621.10.1158/0008-5472.613.65.2Suche in Google Scholar

Yuan, Y., Hilliard, G., Ferguson, T., and Millhorn, D.E. (2003). Cobalt inhibits the interaction between hypoxia-inducible factor-α and von Hippel-Lindau protein by direct binding to hypoxia-inducible factor-α. J. Biol. Chem. 278, 15911–15916.10.1074/jbc.M300463200Suche in Google Scholar PubMed

Yun, J., Rago, C., Cheong, I., Pagliarini, R., Angenendt, P., Rajagopalan, H., Schmidt, K., Wilson, J.K.V., Markowitz, S., Zhou, S., et al. (2009). Pathway mutations in tumor cells. Science 325, 1555–1559.10.1126/science.1174229Suche in Google Scholar PubMed PubMed Central


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2018-0411).


Received: 2018-10-26
Accepted: 2019-01-16
Published Online: 2019-02-14
Published in Print: 2019-06-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 28.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2018-0411/html
Button zum nach oben scrollen