Abstract
The c ring of the Na+ F1Fo ATP synthase from the anaerobic acetogenic bacterium Acetobacterium woodii is encoded by three different genes: atpE1, atpE2 and atpE3. Subunit c1 is similar to typical V-type c subunits and has four transmembrane helices with one ion binding site. Subunit c2 and c3 are identical at the amino acid level and are typical F-type c subunits with one ion binding site in two transmembrane helices. All three constitute a hybrid FoVoc ring, the first found in nature. To analyze whether other species may have similar hybrid rotors, we searched every genome sequence publicly available as of 23 February 2015 for F1Fo ATPase operons that have more than one gene encoding the c subunit. This revealed no other species that has three different c subunit encoding genes but twelve species that encode one Fo- and one Vo-type c subunit in one operon. Their c subunits have the conserved binding motif for Na+. The organisms are all anaerobic. The advantage of hybrid c rings for the organisms in their environments is discussed.
Acknowledgments
This work was supported by grants from the Deutsche Forschungsgemeinschaft (SFB 807).
References
Biegel, E. and Müller, V. (2010). Bacterial Na+-translocating ferredoxin:NAD+ oxidoreductase. Proc. Natl. Acad. Sci. USA 107, 18138–18142.10.1073/pnas.1010318107Suche in Google Scholar
Biegel, E., Schmidt, S., González, J.M., and Müller, V. (2011). Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes. Cell. Mol. Life Sci. 68, 613–634.10.1007/s00018-010-0555-8Suche in Google Scholar
Cai, S. and Dong, X. (2010). Cellulosilyticum ruminicola gen. nov., sp. nov., isolated from the rumen of yak, and reclassification of Clostridium lentocellum as Cellulosilyticum lentocellum comb. nov. Int. J. Syst. Evol. Microbiol. 60, 845–849.10.1099/ijs.0.014712-0Suche in Google Scholar
Cato, E.P., Moore, L.V.H., and Moore, W.E.C. (1985). Fusobacterium alocis sp. nov. and Fusobacterium sulci sp. nov. from the human gingival sulcus. Int. J. Syst. Bacteriol. 35, 475–477.10.1099/00207713-35-4-475Suche in Google Scholar
Dimroth, P. (1997). Primary sodium ion translocating enzymes. Biochim. Biophys. Acta 1318, 11–51.10.1016/S0005-2728(96)00127-2Suche in Google Scholar
Dimroth, P., von Ballmoos, C., and Meier, T. (2006). Catalytic and mechanical cycles in F-ATP synthases. EMBO Rep. 7, 276–282.10.1038/sj.embor.7400646Suche in Google Scholar
Dmitriev, O.Y., Jones, P.C., and Fillingame, R.H. (1999). Structure of the subunit c oligomer in the F1Fo ATP synthase: model derived from solution structure of the monomer and cross-linking in the native enzyme. Proc. Natl. Acad. Sci. USA 96, 7785–7790.10.1073/pnas.96.14.7785Suche in Google Scholar
Downie, J.A., Langman, L., Cox, G.B., Yanofsky, C., and Gibson, F. (1980). Subunits of the adenosine triphosphatase complex translated in vitro from the Escherichia coli unc operon. J. Bacteriol. 143, 8–17.10.1128/jb.143.1.8-17.1980Suche in Google Scholar
Drake, H.L., Hu, S.I., and Wood, H.G. (1981). Purification of five components from Clostridium thermoaceticum which catalyze synthesis of acetate from pyruvate and methyltetrahydrofolate. J. Biol. Chem. 56, 11137–11144.10.1016/S0021-9258(19)68568-6Suche in Google Scholar
Fendrich, C., Hippe, H., and Gottschalk, G. (1990). Clostridium halophilium sp. nov. and C. litorale sp. nov., an obligate halophilic and a marine species degrading betaine in the Stickland reaction. Arch. Microbiol. 154, 127–132.10.1007/BF00423321Suche in Google Scholar
Fillingame, R.H. (1997). Coupling H+ transport and ATP synthesis in F1F0-ATP synthases: Glimpses of interacting parts in a dynamic molecular machine. J. Exp. Biol. 200, 217–224.10.1242/jeb.200.2.217Suche in Google Scholar PubMed
Forgac, M. (2007). Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat. Rev. Mol. Cell. Biol. 8, 917–929.10.1038/nrm2272Suche in Google Scholar PubMed
Fritz, M. and Müller, V. (2007). An intermediate step in the evolution of ATPases – the F1FO-ATPase from Acetobacterium woodii contains F-type and V-type rotor subunits and is capable of ATP synthesis. FEBS J. 274, 3421–3428.10.1111/j.1742-4658.2007.05874.xSuche in Google Scholar PubMed
Fritz, M., Klyszejko, A.L., Morgner, N., Vonck, J., Brutschy, B., Müller, D.J., Meier, T., Müller, V. (2008). An intermediate step in the evolution of ATPases: a hybrid F1FO rotor in a bacterial Na+ F1FO ATP synthase. FEBS J. 275, 1999–2007.10.1111/j.1742-4658.2008.06354.xSuche in Google Scholar PubMed
Gottschalk, G. (1986). Bacterial Metabolism, 2nd Ed, (Springer: Berlin, Germany).10.1007/978-1-4612-1072-6Suche in Google Scholar
Hatch, L.P., Cox, G.B., and Howitt, S.M. (1995). The essential arginine residue at position 210 in the alpha subunit of the Escherichia coli ATP synthase can be transferred to position 252 with partial retention of activity. J. Biol. Chem. 270, 29407–29412.10.1074/jbc.270.49.29407Suche in Google Scholar PubMed
Heise, R., Müller, V., and Gottschalk, G. (1992). Presence of a sodium-translocating ATPase in membrane vesicles of the homoacetogenic bacterium Acetobacterium woodii. Eur. J. Biochem. 206, 553–557.10.1111/j.1432-1033.1992.tb16959.xSuche in Google Scholar PubMed
Heise, R., Müller, V., and Gottschalk, G. (1993). Acetogenesis and ATP synthesis in Acetobacterium woodii are coupled via a transmembrane primary sodium ion gradient. FEMS Microbiol. Lett. 112, 261–268.10.1111/j.1574-6968.1993.tb06460.xSuche in Google Scholar
Hellmuth, K., Rex, G., Surin, B., Zinck, R., and McCarthy, J.E. (1991). Translational coupling varying in efficiency between different pairs of genes in the central region of the atp operon of Escherichia coli. Mol. Microbiol. 5, 813–824.10.1111/j.1365-2958.1991.tb00754.xSuche in Google Scholar PubMed
Hess, V., Schuchmann, K., and Müller, V. (2013). The ferredoxin:NAD+ oxidoreductase (Rnf) from the acetogen Acetobacterium woodii requires Na+ and is reversibly coupled to the membrane potential. J. Biol. Chem. 288, 31496–31502.10.1074/jbc.M113.510255Suche in Google Scholar PubMed PubMed Central
Hirata, R., Graham, L.A., Takatsuki, A., Stevens, T.H., and Anraku, Y. (1997). VMA11 and VMA16 encode second and third proteolipid subunits of the Saccharomyces cerevisiae vacuolar membrane H+-ATPase. J. Biol. Chem. 272, 4795–4803.10.1074/jbc.272.8.4795Suche in Google Scholar
Imkamp, F. and Müller, V. (2002). Chemiosmotic energy conservation with Na+ as the coupling ion during hydrogen-dependent caffeate reduction by Acetobacterium woodii. J. Bacteriol. 184, 1947–1951.10.1128/JB.184.7.1947-1951.2002Suche in Google Scholar
Junge, W., Lill, H., and Engelbrecht, S. (1997). ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biochem. Sci. 22, 420–423.10.1016/S0968-0004(97)01129-8Suche in Google Scholar
Junge, W., Sielaff, H., and Engelbrecht, S. (2009). Torque generation and elastic power transmission in the rotary FOF1-ATPase. Nature 459, 364–370.10.1038/nature08145Suche in Google Scholar
Kaim, G., Wehrle, F., Gerike, U., and Dimroth, P. (1997). Molecular basis for the coupling ion selectivity of F1FO ATP synthases: probing the liganding groups for Na+ and Li+ in the c subunit of the ATP synthase from Propionigenium modestum. Biochem. 36, 9185–9194.10.1021/bi970831qSuche in Google Scholar
Kivistö, A.T. and Karp, M.T. (2011). Halophilic anaerobic fermentative bacteria. J. Biotechnol. 152, 114–124.10.1016/j.jbiotec.2010.08.014Suche in Google Scholar
Konings, W.N., Lolkema, J.S., and Poolman, B. (1995). The generation of metabolic energy by solute transport. Arch. Microbiol. 164, 235–242.10.1007/BF02529957Suche in Google Scholar
Krulwich, T.A., Ito, M., and Guffanti, A.A. (2001). The Na+-dependence of alkaliphily in Bacillus. Biochim. Biophys. Acta 1505, 158–168.10.1016/S0005-2728(00)00285-1Suche in Google Scholar
Li, F., Hinderberger, J., Seedorf, H., Zhang, J., Buckel, W., and Thauer, R.K. (2008). Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri. J. Bacteriol. 190, 843–850.10.1128/JB.01417-07Suche in Google Scholar
Maloney, P.C. (1994). Bacterial transporters. Curr. Opin. Cell Biol. 6, 571–582.10.1016/0955-0674(94)90079-5Suche in Google Scholar
Mandel, M., Moriyama, Y., Hulmes, J.D., Pan, Y.C.E., Nelson, H., and Nelson, N. (1988). cDNA sequence encoding the 16-kDa proteolipid of chromaffin granules implies gene duplication in the evolution of H+-ATPases. Proc. Natl. Acad. Sci. USA 85, 5521–5524.10.1073/pnas.85.15.5521Suche in Google Scholar
Matthies, D., Zhou, W., Klyszejko, A.L., Anselmi, C., Yildiz, Ö., Brandt, K., Müller, V., Faraldo-Gomez, J.D. and Meier, T. (2014). High-resolution structure and mechanism of Na+-coupled F/V-hybrid ATP synthase rotor ring. Nat. Commun. 5, 5286.10.1038/ncomms6286Suche in Google Scholar
Mayer, F. and Müller, V. (2013). Adaptations of anaerobic archaea to life under extreme energy limitation. FEMS Microbiol. Rev. 38, 449–472.10.1111/1574-6976.12043Suche in Google Scholar
McCarthy, J.E. (1988). Expression of the unc genes in Escherichia coli. J. Bioenerg. Biomembr. 20, 19–39.10.1007/BF00762136Suche in Google Scholar
McCarthy, J.E. (1990). Post-transcriptional control in the polycistronic operon environment: studies of the atp operon of Escherichia coli. Mol. Microbiol. 4, 1233–1240.10.1111/j.1365-2958.1990.tb00702.xSuche in Google Scholar
McCarthy, J.E. and Bokelmann, C. (1988). Determinants of translational initiation efficiency in the atp operon of Escherichia coli. Mol. Microbiol. 2, 455–465.10.1111/j.1365-2958.1988.tb00051.xSuche in Google Scholar
McCarthy, J.E. and Gualerzi, C. (1990). Translational control of prokaryotic gene expression. Trends Genet. 6, 78–85.10.1016/0168-9525(90)90098-QSuche in Google Scholar
McCarthy, J.E., Schauder, B., and Ziemke, P. (1988). Post-transcriptional control in Escherichia coli: translation and degradation of the atp operon mRNA. Gene 72, 131–139.10.1016/0378-1119(88)90135-7Suche in Google Scholar
Meier, T., Polzer, P., Diederichs, K., Welte, W., and Dimroth, P. (2005). Structure of the rotor ring of F-type Na+-ATPase from Ilyobacter tartaricus. Science 308, 659–662.10.1126/science.1111199Suche in Google Scholar PubMed
Meier, T., Krah, A., Bond, P.J., Pogoryelov, D., Diederichs, K., and Faraldo-Gómez, J.D. (2009). Complete ion-coordination structure in the rotor ring of Na+-dependent F-ATP synthases. J. Mol. Biol. 391, 498–507.10.1016/j.jmb.2009.05.082Suche in Google Scholar PubMed
Mesbah, N.M. and Wiegel, J. (2008). Life at extreme limits: the anaerobic halophilic alkalithermophiles. Ann. N. Y. Acad. Sci. 1125, 44–57.10.1196/annals.1419.028Suche in Google Scholar PubMed
Mesbah, N.M. and Wiegel, J. (2011). The Na+-translocating F1FO-ATPase from the halophilic, alkalithermophile Natranaerobius thermophilus. Biochim. Biophys. Acta 1807, 1133–1142.10.1016/j.bbabio.2011.05.001Suche in Google Scholar PubMed
Mesbah, N.M., Hedrick, D.B., Peacock, A.D., Rohde, M., and Wiegel, J. (2007). Natranaerobius thermophilus gen. nov., sp. nov., a halophilic, alkalithermophilic bacterium from soda lakes of the Wadi An Natrun, Egypt, and proposal of Natranaerobiaceae fam. nov. and Natranaerobiales ord. nov. Int. J. Syst. Evol. Microbiol. 57, 2507–2512.10.1099/ijs.0.65068-0Suche in Google Scholar PubMed
Mitome, N., Ono, S., Sato, H., Suzuki, T., Sone, N., and Yoshida, M. (2010). Essential arginine residue of the FO-a subunit in FoF1-ATP synthase has a role to prevent the proton shortcut without c-ring rotation in the FO proton channel. Biochem. J. 430, 171–177.10.1042/BJ20100621Suche in Google Scholar PubMed
Müller, V. (2003). Energy conservation in acetogenic bacteria. Appl. Environ. Microbiol. 69, 6345–6353.10.1128/AEM.69.11.6345-6353.2003Suche in Google Scholar PubMed PubMed Central
Müller, V. (2004). An exceptional variability in the motor of archaeal A1AO ATPases: from multimeric to monomeric rotors comprising 6–13. ion binding sites. J. Bioenerg. Biomembr. 36, 115–125.10.1023/B:JOBB.0000019603.68282.04Suche in Google Scholar
Müller, V. (2008) Bacterial fermentation. In: Encyclopedia of Life Sciences. (Wiley-Blackwell: Hoboken, NJ, USA).Suche in Google Scholar
Müller, V., Blaut, M., and Gottschalk, G. (1988). The transmembrane electrochemical gradient of Na+ as driving force for methanol oxidation in Methanosarcina barkeri. Eur. J. Biochem. 172, 601–606.10.1111/j.1432-1033.1988.tb13931.xSuche in Google Scholar PubMed
Müller, V., Imkamp, F., Rauwolf, A., Küsel, K., and Drake, H.L. (2004) Molecular and cellular biology of acetogenic bacteria. In: Strict and Facultative Anaerobes. Medical and Environmental Aspects, MM. Nakano and P. Zuber, eds. (Horizon Biosciences: Norfolk, UK), pp. 251–281.Suche in Google Scholar
Müller, V., Lemker, T., Lingl, A., Weidner, C., Coskun, Ü., and Grüber, G. (2005a). Bioenergetics of archaea: ATP synthesis under harsh environmental conditions. J. Mol. Microbiol. Biotechnol. 10, 167–180.10.1159/000091563Suche in Google Scholar PubMed
Müller, V., Lingl, A., Lewalter, K., and Fritz, M. (2005b). ATP synthases with novel rotor subunits: new insights into structure, function and evolution of ATPases. J. Bioenerg. Biomembr. 37, 455–460.10.1007/s10863-005-9491-ySuche in Google Scholar PubMed
Nelson, N. and Harvey, W.R. (1999). Vacuolar and plasma membrane proton-adenosinetriphosphatases. Physiol. Rev. 79, 361–385.10.1152/physrev.1999.79.2.361Suche in Google Scholar PubMed
Nelson, H. and Nelson, N. (1989). The progenitor of ATP synthases was closely related to the current vacuolar H+-ATPase. FEBS Lett. 247, 147–153.10.1016/0014-5793(89)81259-1Suche in Google Scholar
Nishi, T., Kawasaki-Nishi, S., and Forgac, M. (2003). The first putative transmembrane segment of subunit c′ (Vma16p) of the yeast V-ATPase is not necessary for function. J. Biol. Chem. 278, 5821–5827.10.1074/jbc.M209875200Suche in Google Scholar
Pikuta, E.V., Hoover, R.B., Marsic, D., Whitman, W.B., Lupa, B., Tang, J., and Krader, P. (2009). Proteocatella sphenisci gen. nov., sp. nov., a psychrotolerant, spore-forming anaerobe isolated from penguin guano. Int. J. Syst. Evol. Microbiol. 59, 2302–2307.10.1099/ijs.0.002816-0Suche in Google Scholar
Poehlein, A., Schmidt, S., Kaster, A.K., Goenrich, M., Vollmers, J., Thürmer, A., Bertsch, J., Schuchmann, K., Voigt, B., Hecker, M., et al. (2012). An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis. PLoS One 7, e33439.10.1371/journal.pone.0033439Suche in Google Scholar
Pogoryelov, D., Yildiz, O., Faraldo-Gómez, J.D., and Meier, T. (2009). High-resolution structure of the rotor ring of a proton-dependent ATP synthase. Nat. Struct. Mol. Biol. 16, 1068–1073.10.1038/nsmb.1678Suche in Google Scholar
Preiss, L., Yildiz, O., Hicks, D.B., Krulwich, T.A., and Meier, T. (2010). A new type of proton coordination in an F1FO-ATP synthase rotor ring. PLoS Biol. 8, e1000443.10.1371/journal.pbio.1000443Suche in Google Scholar
Ragsdale, S.W. (2008). Enzymology of the Wood-Ljungdahl pathway of acetogenesis. Ann. N. Y. Acad. Sci. 1125, 129–136.10.1196/annals.1419.015Suche in Google Scholar
Ragsdale, S.W., Clark, J.E., Ljungdahl, L.G., Lundie, L.L., and Drake, H.L. (1983). Properties of purified carbon monoxide dehydrogenase from Clostridium thermoaceticum, a nickel, iron-sulfur protein. J. Biol. Chem. 258, 2364–2369.10.1016/S0021-9258(18)32932-6Suche in Google Scholar
Rahlfs, S. and Müller, V. (1997). Sequence of subunit c of the Na+-translocating F1FO ATPase of Acetobacterium woodii: proposal for determinants of Na+ specificity as revealed by sequence comparisons. FEBS Lett. 404, 269–271.10.1016/S0014-5793(97)00088-4Suche in Google Scholar
Rahlfs, S., Aufurth, S., and Müller, V. (1999). The Na+-F1FO-ATPase operon from Acetobacterium woodii. Operon structure and presence of multiple copies of atpE which encode proteolipids of 8- and 18-kDa. J. Biol. Chem. 274, 33999–34004.10.1074/jbc.274.48.33999Suche in Google Scholar PubMed
Reidlinger, J. and Müller, V. (1994). Purification of ATP synthase from Acetobacterium woodii and identification as a Na+-translocating F1FO-type enzyme. Eur. J. Biochem. 223, 275–283.10.1111/j.1432-1033.1994.tb18992.xSuche in Google Scholar
Roberts, D.L., James-Hagstrom, J.E., Garvin, D.K., Gorst, C.M., Runquist, J.A., Baur, J.R., Haase, F.C., and Ragsdale, S.W. (1989). Cloning and expression of the gene cluster encoding key proteins involved in acetyl-CoA synthesis in Clostridium thermoaceticum: CO dehydrogenase, the corrinoid/Fe-S protein, and methyltransferase. Proc. Natl. Acad. Sci. USA 86, 32–36.10.1073/pnas.86.1.32Suche in Google Scholar
Sambongi, Y., Iko, Y., Tanabe, M., Omote, H., Iwamoto-Kihara, A., Ueda, I., Yanagida, T., Wada, Y., and Futai, M. (1999). Mechanical rotation of the c subunit oligomer in ATP synthase (FOF1): direct observation. Science 286, 1722–1724.10.1126/science.286.5445.1722Suche in Google Scholar
Schauder, B. and McCarthy, J.E. (1989). The role of bases upstream of the Shine-Dalgarno region and in the coding sequence in the control of gene expression in Escherichia coli: translation and stability of mRNAs in vivo. Gene 78, 59–72.10.1016/0378-1119(89)90314-4Suche in Google Scholar
Schmidt, S., Biegel, E., and Müller, V. (2009). The ins and outs of Na+ bioenergetics in Acetobacterium woodii. Biochim. Biophys. Acta 1787, 691–696.10.1016/j.bbabio.2008.12.015Suche in Google Scholar PubMed
Schuchmann, K. and Müller, V. (2012). A bacterial electron bifurcating hydrogenase. J. Biol. Chem. 287, 31165–31171.10.1074/jbc.M112.395038Suche in Google Scholar PubMed PubMed Central
Schuchmann, K. and Müller, V. (2014). Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat. Rev. Microbiol. 12, 809–821.10.1038/nrmicro3365Suche in Google Scholar PubMed
Schulz, S., Iglesias-Cans, M., Krah, A., Yildiz, O., Leone, V., Matthies, D., Cook, G.M., Faraldo-Gomez, J.D. and Meier, T. (2013). A new type of Na+-driven ATP synthase membrane rotor with a two-carboxylate ion-coupling motif. PLoS Biol. 11, e1001596.10.1371/journal.pbio.1001596Suche in Google Scholar PubMed PubMed Central
Seedorf, H., Fricke, W.F., Veith, B., Brüggemann, H., Liesegang, H., Strittmatter, A., Miethke, M., Buckel, W., Hinderberger, J., Li, F., et al. (2008). The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proc. Natl. Acad. Sci. USA 105, 2128–2133.10.1073/pnas.0711093105Suche in Google Scholar PubMed PubMed Central
Stock, D., Leslie, A.G., and Walker, J.E. (1999). Molecular architecture of the rotary motor in ATP synthase. Science 286, 1700–1705.10.1126/science.286.5445.1700Suche in Google Scholar PubMed
Symersky, J., Pagadala, V., Osowski, D., Krah, A., Meier, T., Faraldo-Gomez, J.D., and Mueller, D.M. (2012). Structure of the c10 ring of the yeast mitochondrial ATP synthase in the open conformation. Nat. Struct. Mol. Biol. 19, 485–491.10.1038/nsmb.2284Suche in Google Scholar
Toei, M., Gerle, C., Nakano, M., Tani, K., Gyobu, N., Tamakoshi, M., Sone, N., Yoshida, M., Fujiyoshi, Y., Mitsuoka, K., et al. (2007). Dodecamer rotor ring defines H+/ATP ratio for ATP synthesis of prokaryotic V-ATPase from Thermus thermophilus. Proc. Natl. Acad. Sci. USA 104, 20256–20261.10.1073/pnas.0706914105Suche in Google Scholar
Valiyaveetil, F.I. and Fillingame, R.H. (1997). On the role of Arg-210 and Glu-219 of subunit a in proton translocation by the Escherichia coli FOF1-ATP synthase. J. Biol. Chem. 272, 32635–32641.10.1074/jbc.272.51.32635Suche in Google Scholar
Vik, S.B. and Antonio, B.J. (1994). A mechanism of proton translocation by F1FO ATP synthases suggested by double mutants of the α subunit. J. Biol. Chem. 269, 30364–30369.10.1016/S0021-9258(18)43822-7Suche in Google Scholar
Vollmar, M., Schlieper, D., Winn, M., Buchner, C., and Groth, G. (2009). Structure of the c14 rotor ring of the proton translocating chloroplast ATP synthase. J. Biol. Chem. 284, 18228–18235.10.1074/jbc.M109.006916Suche in Google Scholar PubMed PubMed Central
von Ballmoos, C., Wiedenmann, A., and Dimroth, P. (2009). Essentials for ATP synthesis by F1FO ATP synthases. Annu. Rev. Biochem. 78, 649–672.10.1146/annurev.biochem.78.081307.104803Suche in Google Scholar PubMed
Watt, I.N., Montgomery, M.G., Runswick, M.J., Leslie, A.G., and Walker, J.E. (2010). Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. Proc. Natl. Acad. Sci. USA 107, 16823–16827.10.1073/pnas.1011099107Suche in Google Scholar PubMed PubMed Central
Wood, H.G. and Ljungdahl, L.G. (1991) Autotrophic character of the acetogenic bacteria. In: Variations in Autotrophic Life, JM. Shively and LL. Barton, eds. (Academic Press: San Diego, CA), pp. 201–250.Suche in Google Scholar
Ye, Q., Roh, Y., Carroll, S.L., Blair, B., Zhou, J., Zhang, C.L., and Fields, M.W. (2004). Alkaline anaerobic respiration: isolation and characterization of a novel alkaliphilic and metal-reducing bacterium. Appl. Environ. Microbiol. 70, 5595–5602.10.1128/AEM.70.9.5595-5602.2004Suche in Google Scholar PubMed PubMed Central
Zhilina, T.N. and Zavarzin, G.A. (1990). Extremely halophilic, methylotrophic, anaerobic bacteria. FEMS Microbiol. Lett. 87, 315–322.10.1111/j.1574-6968.1990.tb04930.xSuche in Google Scholar
Zhilina, T.N., Garnova, E.S., Turova, T.P., Kostrikina, N.A., and Zavarzin, G.A. (2001). Halonatronum saccharophilum gen. nov. sp. nov. – a new haloalkalophilic bacteria from the order Haloanaerobiales from Lake Magadi. Mikrobiology 70, 77–85.Suche in Google Scholar
©2015 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Meeting Report
- Membrane Transport and Communication in Frankfurt: Speakers’ Summary – Highlights
- HIGHLIGHT: MEMBRANE TRANSPORT AND COMMUNICATION
- Structure, function, evolution, and application of bacterial Pnu-type vitamin transporters
- Team work at its best – TAPL and its two domains
- The volume-regulated anion channel is formed by LRRC8 heteromers – molecular identification and roles in membrane transport and physiology
- Extending native mass spectrometry approaches to integral membrane proteins
- Functional diversity of the superfamily of K+ transporters to meet various requirements
- The structure of Na+-translocating of NADH:ubiquinone oxidoreductase of Vibrio cholerae: implications on coupling between electron transfer and Na+ transport
- Hybrid rotors in F1Fo ATP synthases: subunit composition, distribution, and physiological significance
- Homeostatic control of biological membranes by dedicated lipid and membrane packing sensors
- The transporter associated with antigen processing: a key player in adaptive immunity
- The pseudo-atomic structure of an RND-type tripartite multidrug efflux pump
- The assembly and disassembly of the AcrAB-TolC three-component multidrug efflux pump
- A universal mechanism for transport and regulation of CPA sodium proton exchangers
- Biosynthesis of membrane dependent proteins in insect cell lysates: identification of limiting parameters for folding and processing
- Fluorescence and excited state dynamics of the deprotonated Schiff base retinal in proteorhodopsin
- Regulatory role of charged clusters in the N-terminal domain of BetP from Corynebacterium glutamicum
- The contribution of methionine to the stability of the Escherichia coli MetNIQ ABC transporter-substrate binding protein complex
- The ABC exporter MsbA probed by solid state NMR – challenges and opportunities
- Functional properties of LptA and LptD in Anabaena sp. PCC 7120
Artikel in diesem Heft
- Frontmatter
- Meeting Report
- Membrane Transport and Communication in Frankfurt: Speakers’ Summary – Highlights
- HIGHLIGHT: MEMBRANE TRANSPORT AND COMMUNICATION
- Structure, function, evolution, and application of bacterial Pnu-type vitamin transporters
- Team work at its best – TAPL and its two domains
- The volume-regulated anion channel is formed by LRRC8 heteromers – molecular identification and roles in membrane transport and physiology
- Extending native mass spectrometry approaches to integral membrane proteins
- Functional diversity of the superfamily of K+ transporters to meet various requirements
- The structure of Na+-translocating of NADH:ubiquinone oxidoreductase of Vibrio cholerae: implications on coupling between electron transfer and Na+ transport
- Hybrid rotors in F1Fo ATP synthases: subunit composition, distribution, and physiological significance
- Homeostatic control of biological membranes by dedicated lipid and membrane packing sensors
- The transporter associated with antigen processing: a key player in adaptive immunity
- The pseudo-atomic structure of an RND-type tripartite multidrug efflux pump
- The assembly and disassembly of the AcrAB-TolC three-component multidrug efflux pump
- A universal mechanism for transport and regulation of CPA sodium proton exchangers
- Biosynthesis of membrane dependent proteins in insect cell lysates: identification of limiting parameters for folding and processing
- Fluorescence and excited state dynamics of the deprotonated Schiff base retinal in proteorhodopsin
- Regulatory role of charged clusters in the N-terminal domain of BetP from Corynebacterium glutamicum
- The contribution of methionine to the stability of the Escherichia coli MetNIQ ABC transporter-substrate binding protein complex
- The ABC exporter MsbA probed by solid state NMR – challenges and opportunities
- Functional properties of LptA and LptD in Anabaena sp. PCC 7120