Home Life Sciences The pseudo-atomic structure of an RND-type tripartite multidrug efflux pump
Article
Licensed
Unlicensed Requires Authentication

The pseudo-atomic structure of an RND-type tripartite multidrug efflux pump

  • Dijun Du , Jarrod Voss , Zhao Wang , Wah Chiu and Ben F. Luisi EMAIL logo
Published/Copyright: March 23, 2015

Abstract

Microorganisms encode several classes of transmembrane molecular pumps that can expel a wide range of chemically distinct toxic substances. These machines contribute to the capacity of the organisms to withstand harsh environments, and they help to confer resistance against clinical antimicrobial agents. In Gram-negative bacteria, some of the pumps comprise tripartite assemblies that actively transport drugs and other harmful compounds across the cell envelope. We describe recent structural and functional data that have provided insights into the architecture and transport mechanism of the AcrA-AcrB-TolC pump of Escherichia coli. This multidrug efflux pump is powered by proton electrochemical gradients through the activity of AcrB, a member of the resistance/nodulation/cell division (RND) transporter family. Crystallographic data reveal how the small protein AcrZ binds to AcrB in a concave surface of the transmembrane domain, and we discuss how this interaction may affect the efflux activities of the transporter.


Corresponding author: Ben F. Luisi, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK, e-mail:

Acknowledgments

The authors are supported by the MRC, HFSP, Herschel Smith foundation (JEV), the Wellcome Trust and NIH. We thank our colleagues Martin Pos, Rik van Veen and Satoshi Murakami for many stimulating discussions.

Funding: Wellcome Trust, (Grant/Award Number: ‘076846/Z/05/A’). National Institutes for Health Research, (Grant/Award Number: ‘P41GM103832’).

References

Akama, H., Matsuura, T., Kashiwagi, S., Yoneyama, H., Narita, S., Tsukihara, T., Nakagawa, A., and Nakae, T. (2004). Crystal structure of the membrane fusion protein, MexA, of the multidrug transporter in Pseudomonas aeruginosa. J. Biol. Chem. 279, 25939–25942.10.1074/jbc.C400164200Search in Google Scholar PubMed

Bavro, V.N., Pietras, Z., Furnham, N., Pérez-Cano, L., Fernández-Recio, J., Pei, X.Y., Misra, R., and Luisi B. (2008). Assembly and channel opening in a bacterial drug efflux machine. Mol. Cell 30, 114–121.10.1016/j.molcel.2008.02.015Search in Google Scholar PubMed PubMed Central

Bokma, E., Koronakis, E., Lobedanz, S., Hughes, C., and Koronakis, V. (2006). Directed evolution of a bacterial efflux pump: adaptation of the E. coli TolC exit duct to the Pseudomonas MexAB translocase. FEBS Lett. 580, 5339–5343.10.1016/j.febslet.2006.09.005Search in Google Scholar PubMed

Borges-Walmsley, M.I., McKeegan, K.S., and Walmsley, A.R. (2003). Structure and function of efflux pumps that confer resistance to drugs. Biochem. J. 376, 313–338.10.1042/bj20020957Search in Google Scholar PubMed PubMed Central

D’Costa, V.M., King, C.E., Kalan, L., Morar, M., Sung, W.W., Schwarz, C., Froese, D., Zazula, G., Calmels, F., Debruyne, R., et al. (2011). Antibiotic resistance is ancient. Nature 477, 457–461.10.1038/nature10388Search in Google Scholar PubMed

Davidson, A.L. and Chen, J. (2004). ATP-binding cassette transporters in bacteria. Annu. Rev. Biochem. 73, 241–268.10.1146/annurev.biochem.73.011303.073626Search in Google Scholar PubMed

Du, D., Wang, Z., James, N.R., Voss, J.E., Klimont, E., Ohene-Agyei, T., Venter, H. Chiu, W. and Luisi, B.F. (2014). Structure of the AcrAB-TolC multidrug efflux pump. Nature 509, 512–515.10.1038/nature13205Search in Google Scholar PubMed PubMed Central

Eicher, T., Seeger, M.A., Anselmi, C., Zhou, W., Brandstätter, L., Verrey, F., Diederichs, K., Faraldo-Gómez, J.D., and Pos K.M. (2014). Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB. eLife 3, doi: 10.7554/eLife.03145.10.7554/eLife.03145Search in Google Scholar PubMed PubMed Central

Ge, Q., Yamada, Y., and Zgurskaya H. (2009). The C-terminal domain of AcrA is essential for the assembly and function of the multidrug efflux pump AcrAB-TolC. J. Bacteriol. 191, 4365–4371.10.1128/JB.00204-09Search in Google Scholar PubMed PubMed Central

Greene, N.P., Hinchliffe, P., Crow, A., Ababou, A., Hughes, C., and Koronakis, V. (2013). Structure of an atypical periplasmic adaptor from a multidrug efflux pump of the spirochete Borrelia burgdorferi. FEBS Lett. 587, 2984–2988.10.1016/j.febslet.2013.06.056Search in Google Scholar PubMed PubMed Central

Higgins, M.K., Bokma, E., Koronakis, E., Hughes, C., and Koronakis, V. (2004). Structure of the periplasmic component of a bacterial drug efflux pump. Proc. Natl. Acad. Sci. USA 101, 9994–9999.10.1073/pnas.0400375101Search in Google Scholar PubMed PubMed Central

Hinchliffe, P., Greene, N.P., Paterson, N.G., Crow, A., Hughes, C., and Koronakis, V. (2014). Structure of the periplasmic adaptor protein from a major facilitator superfamily (MFS) multidrug efflux pump. FEBS. Lett. 588, 3147–3153.10.1016/j.febslet.2014.06.055Search in Google Scholar PubMed PubMed Central

Hobbs, E.C., Yin, X., Paul, B.J., Astarita, J.L., and Storz, G. (2012). Conserved small protein associates with the multidrug efflux pump AcrB and differentially affects antibiotic resistance. Proc. Natl. Acad. Sci. USA 109, 16696–701.10.1073/pnas.1210093109Search in Google Scholar PubMed PubMed Central

Hu, B., Margolin, W., Molineux, I.J., and Liu, J. (2013). The bacteriophage t7 virion undergoes extensive structural remodeling during infection. Science 339, 576–579.10.1126/science.1231887Search in Google Scholar PubMed PubMed Central

Huang, Y.W., Hu, R.M., Chu, F.Y., Lin, H.R., and Yang, T.C. (2013). Characterization of a major facilitator superfamily (MFS) tripartite efflux pump EmrCABsm from Stenotrophomonas maltophilia. J. Antimicrob. Chemother. 68, 2498–2505.10.1093/jac/dkt250Search in Google Scholar PubMed

Janganan, T.K., Bavro, V.N., Zhang, L., Matak-Vinkovic, D., Barrera, N.P., Venien-Bryan, C., Robinson, C.V., Borges-Walmsley, M.I., and Walmsley, A.R. (2011). Evidence for the assembly of a bacterial tripartite multidrug pump with a stoichiometry of 3:6:3. J. Biol. Chem. 286, 26900–26912.10.1074/jbc.M111.246595Search in Google Scholar PubMed PubMed Central

Kim, H.M., Xu, Y., Lee, M., Piao, S., Sim, S.H., Ha, N.C., and Lee, K. (2010). Functional relationships between the AcrA hairpin tip region and the TolC aperture tip region for the formation of the bacterial tripartite efflux pump AcrAB-TolC. J. Bacteriol. 192, 4498–4503.10.1128/JB.00334-10Search in Google Scholar PubMed PubMed Central

Kim, J.S., Jeong, H., Song, S., Kim, H.Y., Lee, K., Hyun, J., and Ha, N.C. (2015). Structure of the tripartite multidrug efflux pump AcrAB-TolC suggests an alternative assembly mode. Mol. Cells 38,180–6.10.14348/molcells.2015.2277Search in Google Scholar PubMed PubMed Central

Kobayashi, N., Tamura, N., van Veen, H.W., Yamaguchi, A., and Murakami, S. (2014). β-Lactam selectivity of multidrug transporters AcrB and AcrD Resides in the proximal binding pocket. J. Biol. Chem. 289, 10680–10690.10.1074/jbc.M114.547794Search in Google Scholar PubMed PubMed Central

Koronakis, V., Sharff, A., Koronakis, E., Luisi, B., and Hughes, C. (2000). Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405, 914–9.10.1038/35016007Search in Google Scholar PubMed

Lee, M., Kim, H.L., Song, S., Joo, M., Lee, S., Kim, D., Hahn, Y., Ha, N.C., and Lee, K. (2013). The α-barrel tip region of Escherichia coli TolC homologs of Vibrio vulnificus interacts with the MacA protein to form the functional macrolide-specific efflux pump MacAB-TolC. J. Microbiol. 51, 154–159.10.1007/s12275-013-2699-3Search in Google Scholar PubMed

Lei, H.T., Chou, T.H., Su, C.C., Bolla, J.R., Kumar, N., Radhakrishnan, A., Long, F., Delmar, J.A., Do, S.V., Rajashankar, K.R., et al. (2014). Crystal structure of the open state of the Neisseria gonorrhoeae MtrE outer membrane channel. PLoS One 9, e97475.10.1371/journal.pone.0097475Search in Google Scholar PubMed PubMed Central

Lobedanz, S., Bokma, E., Symmons, M.F., Koronakis, E., Hughes, C., and Koronakis, V. (2007). A periplasmic coiled-coil interface underlying TolC recruitment and the assembly of bacterial drug efflux pumps. Proc. Natl. Acad. Sci. USA 104, 4612–4617.10.1073/pnas.0610160104Search in Google Scholar PubMed PubMed Central

Mikolosko, J., Bobyk, K., Zgurskaya, H.I., and Ghosh, P. (2006). Conformational flexibility in the multidrug efflux system protein AcrA. Structure 14, 577–587.10.1016/j.str.2005.11.015Search in Google Scholar PubMed PubMed Central

Mima, T., Joshi, S., Gomez-Escalada, M., and Schweizer, H.P. (2007). Identification and characterization of TriABC-OpmH, a triclosan efflux pump of Pseudomonas aeruginosa requiring two membrane fusion proteins. J. Bacteriol. 189, 7600–7609.10.1128/JB.00850-07Search in Google Scholar PubMed PubMed Central

Modali, S.D. and Zgurskaya, H.I. (2011). The periplasmic membrane proximal domain of MacA acts as a switch in stimulation of ATP hydrolysis by MacB transporter. Mol. Microbiol. 81, 937–951.10.1111/j.1365-2958.2011.07744.xSearch in Google Scholar PubMed PubMed Central

Murakami, S., Nakashima, R., Yamashita, E., and Yamaguchi, A. (2002). Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419, 587–593.10.1038/nature01050Search in Google Scholar PubMed

Murakami S., Nakashima R., Yamashita E., Matsumoto T., and Yamaguchi A. (2006). Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443, 173–179.10.1038/nature05076Search in Google Scholar PubMed

Nakashima R., Sakurai K., Yamasaki S., Nishino K., and Yamaguchi A. (2011). Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket. Nature480, 565–569.10.1038/nature10641Search in Google Scholar PubMed

Nakashima, R., Sakurai, K., Yamasaki, S., Hayashi, K., Nagata, C., Hoshino, K., Onodera, Y., Nishino, K., and Yamaguchi, A. (2013). Structural basis for the inhibition of bacterial multidrug exporters. Nature 500, 102–106.10.1038/nature12300Search in Google Scholar PubMed

Narita, S., Eda, S., Yoshihara, E., and Nakae, T. (2003). Linkage of the efflux-pump expression level with substrate extrusion rate in the MexAB-OprM efflux pump of Pseudomonas aeruginosa. Biochem. Biophys. Res. Commun. 308, 922–926.10.1016/S0006-291X(03)01512-2Search in Google Scholar

Parker, J.L., Mindell, J.A., and Newstead, S. (2014). Thermodynmaic evidence for a dual transport mechanism in a POT peptide transporter. eLife 3, e04273.10.7554/eLife.04273.016Search in Google Scholar

Pei, X.Y., Hinchliffe, P., Symmons, M.F., Koronakis, E., Benz, R., Hughes, C., and Koronakis, V. (2011). Structures of sequential open states in a symmetrical opening transition of the TolC exit duct. Proc. Natl. Acad. Sci. USA 108, 2112–2117.10.1073/pnas.1012588108Search in Google Scholar PubMed PubMed Central

Piddock LJ (2006). Multidrug-resistance efflux pumps – not just for resistance. Nat. Rev. Microbiol. 4, 629–636.10.1038/nrmicro1464Search in Google Scholar PubMed

Putman, M., van Veen, H.W., and Konings, W.N. (2000). Molecular properties of bacterial multidrug transporters. Microbiol. Mol. Biol. Rev. 64, 672–693.10.1128/MMBR.64.4.672-693.2000Search in Google Scholar PubMed PubMed Central

Ruiz, N., Kahne, D., and Silhavy, T.J. (2009). Transport of lipopolysaccharide across the cell envelope: the long road of discovery. Nat. Rev. Microbiol. 7, 677–683.10.1038/nrmicro2184Search in Google Scholar PubMed PubMed Central

Seeger, M.A., Schiefner, A., Eicher, T., Verrey, F., Diederichs, K., and Pos, K.M. (2006). Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science 313, 1295–1298.10.1126/science.1131542Search in Google Scholar PubMed

Seeger, M.A., von Ballmoos, C., Verrey, F., and Pos, K.M. (2009). Crucial role of Asp408 in the proton translocation pathway of multidrug transporter AcrB: evidence from site-directed mutagenesis and carbodiimide labeling. Biochemistry 48, 5801–5812.10.1021/bi900446jSearch in Google Scholar PubMed

Silhavy, T.J., Kahne, D., and Walker, S. (2010). The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2, a000414.10.1101/cshperspect.a000414Search in Google Scholar PubMed PubMed Central

Stegmeier, J.F., Polleichtner, G., Brandes, N., Hotz, C., and Andersen, C. (2006). Importance of the adaptor (membrane fusion) protein hairpin domain for the functionality of multidrug efflux pumps. Biochemistry 45, 10303–10312.10.1021/bi060320gSearch in Google Scholar PubMed

Storz, G., Wolf, Y.I., and Ramamurthi, K.S. (2014). Small proteins can no longer be ignored. Annu. Rev. Biochem. 83, 753–777.10.1146/annurev-biochem-070611-102400Search in Google Scholar PubMed PubMed Central

Su, C.C., Long, F., Zimmermann, M.T., Rajashankar, K.R., Jernigan, R.L., and Yu, E.W. (2011). Crystal structure of the CusBA heavy-metal efflux complex of Escherichia coli. Nature 470, 558–562.10.1038/nature09743Search in Google Scholar PubMed PubMed Central

Sun, J. J, Deng, Z., and Yan, A. (2014). Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations. Biochem. Biophys. Res. Commun. 453, 254–267.10.1016/j.bbrc.2014.05.090Search in Google Scholar PubMed

Symmons, M.F., Bokma, E., Koronakis, E., Hughes, C., and Koronakis, V. (2009). The assembled structure of a complete tripartite bacterial multidrug efflux pump. Proc. Natl. Acad. Sci. USA 106, 7173–7178.10.1073/pnas.0900693106Search in Google Scholar PubMed PubMed Central

Tal, N. and Schuldiner, S. (2009). A coordinated network of transporters with overlapping specificities provides a robust survival strategy. Proc. Natl. Acad. Sci. USA 106, 9051–9056.10.1073/pnas.0902400106Search in Google Scholar PubMed PubMed Central

Tamura, N., Murakami, S., Oyama, Y., Ishiguro, M., and Yamaguchi, A. (2005). Direct interaction of multidrug efflux transporter AcrB and outer membrane channel TolC detected via site-directed disulfide cross-linking. Biochemistry 44, 11115–11121.10.1021/bi050452uSearch in Google Scholar PubMed

Tanabe, M., Szakonyi, G., Brown, K.A., Henderson, P.J., Nield, J., and Byrne, B. (2009). The multidrug resistance efflux pump complex, EmrAB from Escherichia coli forms a dimer in vitro. Biochem. Biophys. Res. Commun. 380, 338–342.10.1016/j.bbrc.2009.01.081Search in Google Scholar PubMed

Törnroth-Horsefield, S., Gourdon, P., Horsefield, R., Brive, L., Yamamoto, N., Mori, H., Snijder, A., and Neutze, R. (2007). Crystal structure of AcrB in complex with a single transmembrane subunit reveals another twist. Structure 15, 1663–1673.10.1016/j.str.2007.09.023Search in Google Scholar PubMed

Tsukagoshi, N. and Aono, R. (2000). Entry into and release of solvents by Escherichia coli in an organic-aqueous two-liquid-phase system and substrate specificity of the AcrAB-TolC solvent-extruding pump. J. Bacteriol. 182, 4803–4810.10.1128/JB.182.17.4803-4810.2000Search in Google Scholar PubMed PubMed Central

Vediyappan, G., Borisova, T., and Fralick, J.A. (2006). Isolation and characterization of VceC gain-of-function mutants that can function with the AcrAB multiple-drug-resistant efflux pump of Escherichia coli. J. Bacteriol. 188, 3757–3762.10.1128/JB.00038-06Search in Google Scholar PubMed PubMed Central

Weeks, J.W., Bavro, V.N., and Misra, R. (2014). Genetic assessment of the role of AcrB β-hairpins in the assembly of the TolC-AcrAB multidrug efflux pump of Escherichia coli. Mol. Microbiol. 91, 965–975.10.1111/mmi.12508Search in Google Scholar PubMed PubMed Central

White, D.G., Goldman J.D., Demple, B., and Levy, S.B. (1997). Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli. J. Bacteriol. 179, 6122–6126.10.1128/jb.179.19.6122-6126.1997Search in Google Scholar PubMed PubMed Central

Wilson, D.N. (2014). Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat. Rev. Microbiol. 12, 35–48.10.1038/nrmicro3155Search in Google Scholar PubMed

Wong, K., Ma, J., Rothnie, A., Biggin, P.C., and Kerr, I.D. (2014). Towards understanding promiscuity in multidrug efflux pumps. Trends Biochem. Sci. 39, 8–16.10.1016/j.tibs.2013.11.002Search in Google Scholar PubMed

Xu, Y., Song, S., Moeller, A., Kim, N., Piao, S., Sim, S.H., Kang, M., Yu, W., Cho, H.S., Chang, I., et al. (2011). Functional implications of an intermeshing cogwheel-like interaction between TolC and MacA in the action of macrolide-specific efflux pump MacAB-TolC. J. Biol. Chem. 286, 13541–13549.10.1074/jbc.M110.202598Search in Google Scholar PubMed PubMed Central

Yao, X.Q., Kenzaki, H., Murakami, S., and Takada S. (2010). Drug export and allosteric coupling in a multidrug transporter revealed by molecular simulations. Nat. Commun. 1, 1–8.10.1038/ncomms1116Search in Google Scholar PubMed PubMed Central

Yum, S., Xu, Y., Piao, S., Sim, S.H., Kim, H.M., Jo, W.S., Kim, K.J., Kweon, H.S., Jeong, M.H., Jeon, H., et al. (2009). Crystal structure of the periplasmic component of a tripartite macrolide-specific efflux pump. J. Mol. Biol. 387, 1286–1297.10.1016/j.jmb.2009.02.048Search in Google Scholar PubMed

Received: 2015-2-2
Accepted: 2015-3-16
Published Online: 2015-3-23
Published in Print: 2015-9-1

©2015 by De Gruyter

Articles in the same Issue

  1. Frontmatter
  2. Meeting Report
  3. Membrane Transport and Communication in Frankfurt: Speakers’ Summary – Highlights
  4. HIGHLIGHT: MEMBRANE TRANSPORT AND COMMUNICATION
  5. Structure, function, evolution, and application of bacterial Pnu-type vitamin transporters
  6. Team work at its best – TAPL and its two domains
  7. The volume-regulated anion channel is formed by LRRC8 heteromers – molecular identification and roles in membrane transport and physiology
  8. Extending native mass spectrometry approaches to integral membrane proteins
  9. Functional diversity of the superfamily of K+ transporters to meet various requirements
  10. The structure of Na+-translocating of NADH:ubiquinone oxidoreductase of Vibrio cholerae: implications on coupling between electron transfer and Na+ transport
  11. Hybrid rotors in F1Fo ATP synthases: subunit composition, distribution, and physiological significance
  12. Homeostatic control of biological membranes by dedicated lipid and membrane packing sensors
  13. The transporter associated with antigen processing: a key player in adaptive immunity
  14. The pseudo-atomic structure of an RND-type tripartite multidrug efflux pump
  15. The assembly and disassembly of the AcrAB-TolC three-component multidrug efflux pump
  16. A universal mechanism for transport and regulation of CPA sodium proton exchangers
  17. Biosynthesis of membrane dependent proteins in insect cell lysates: identification of limiting parameters for folding and processing
  18. Fluorescence and excited state dynamics of the deprotonated Schiff base retinal in proteorhodopsin
  19. Regulatory role of charged clusters in the N-terminal domain of BetP from Corynebacterium glutamicum
  20. The contribution of methionine to the stability of the Escherichia coli MetNIQ ABC transporter-substrate binding protein complex
  21. The ABC exporter MsbA probed by solid state NMR – challenges and opportunities
  22. Functional properties of LptA and LptD in Anabaena sp. PCC 7120
Downloaded on 22.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2015-0118/html
Scroll to top button