Startseite The volume-regulated anion channel is formed by LRRC8 heteromers – molecular identification and roles in membrane transport and physiology
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The volume-regulated anion channel is formed by LRRC8 heteromers – molecular identification and roles in membrane transport and physiology

  • Tobias Stauber EMAIL logo
Veröffentlicht/Copyright: 14. April 2015

Abstract

Cellular volume regulation is fundamental for numerous physiological processes. The volume-regulated anion channel, VRAC, plays a crucial role in regulatory volume decrease. This channel, which is ubiquitously expressed in vertebrates, has been vastly characterized by electrophysiological means. It opens upon cell swelling and conducts chloride and arguably organic osmolytes. VRAC has been proposed to be critically involved in various cellular and organismal functions, including cell proliferation and migration, apoptosis, transepithelial transport, swelling-induced exocytosis and intercellular communication. It may also play a role in pathological states like cancer and ischemia. Despite many efforts, the molecular identity of VRAC had remained elusive for decades, until the recent discovery of heteromers of LRRC8A with other LRRC8 family members as an essential VRAC component. This identification marks a starting point for studies on the structure-function relation, for molecular biological investigations of its cell biology and for re-evaluating the physiological roles of VRAC. This review recapitulates the identification of LRRC8 heteromers as VRAC components, depicts the similarities between LRRC8 proteins and pannexins, and discussed whether VRAC conducts larger osmolytes. Furthermore, proposed physiological functions of VRAC and the present knowledge about the physiological significance of LRRC8 proteins are summarized and collated.


Corresponding author: Tobias Stauber, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, D-14195 Berlin, Germany, e-mail:

Acknowledgments

I would like to thank Thomas Jentsch, Jonas Münch, Florian Ullrich and Felizia Voss for the figures and for the teamwork during the molecular identification of VRAC. I apologize to those whose work was omitted owing to space and reference limitations. I am grateful for financial support from the German Federal Ministry of Education and Research (BMBF), e:Bio grant no. 031A314.

References

Abascal, F. and Zardoya, R. (2012). LRRC8 proteins share a common ancestor with pannexins, and may form hexameric channels involved in cell-cell communication. Bioessays 34, 551–560.10.1002/bies.201100173Suche in Google Scholar PubMed

Akita, T., Fedorovich, S.V., and Okada, Y. (2011). Ca2+ nanodomain-mediated component of swelling-induced volume-sensitive outwardly rectifying anion current triggered by autocrine action of ATP in mouse astrocytes. Cell. Physiol. Biochem. 28, 1181–1190.10.1159/000335867Suche in Google Scholar PubMed

Akita, T. and Okada, Y. (2014). Characteristics and roles of the volume-sensitive outwardly rectifying (VSOR) anion channel in the central nervous system. Neuroscience 275C, 211–231.10.1016/j.neuroscience.2014.06.015Suche in Google Scholar PubMed

Almaca, J., Tian, Y., Aldehni, F., Ousingsawat, J., Kongsuphol, P., Rock, J.R., Harfe, B.D., Schreiber, R., and Kunzelmann, K. (2009). TMEM16 proteins produce volume-regulated chloride currents that are reduced in mice lacking TMEM16A. J. Biol. Chem. 284, 28571–28578.10.1074/jbc.M109.010074Suche in Google Scholar PubMed PubMed Central

Arreola, J., Begenisch, T., Nehrke, K., Nguyen, H.V., Park, K., Richardson, L., Yang, B., Schutte, B.C., Lamb, F.S., and Melvin, J.E. (2002). Secretion and cell volume regulation by salivary acinar cells from mice lacking expression of the Clcn3 Cl- channel gene. J. Physiol. 545, 207–216.10.1113/jphysiol.2002.021980Suche in Google Scholar PubMed PubMed Central

Banderali, U. and Roy, G. (1992). Anion channels for amino acids in MDCK cells. Am. J. Physiol. 263, C1200–1207.10.1152/ajpcell.1992.263.6.C1200Suche in Google Scholar PubMed

Benfenati, V., Caprini, M., Nicchia, G.P., Rossi, A., Dovizio, M., Cervetto, C., Nobile, M., and Ferroni, S. (2009). Carbenoxolone inhibits volume-regulated anion conductance in cultured rat cortical astroglia. Channels 3, 323–336.10.4161/chan.3.5.9568Suche in Google Scholar PubMed

Best, L., Brown, P.D., Sener, A., and Malaisse, W.J. (2010). Electrical activity in pancreatic islet cells: the VRAC hypothesis. Islets 2, 59–64.10.4161/isl.2.2.11171Suche in Google Scholar PubMed

Blum, A.E., Walsh, B.C., and Dubyak, G.R. (2010). Extracellular osmolarity modulates G protein-coupled receptor-dependent ATP release from 1321N1 astrocytoma cells. Am. J. Physiol. 298, C386–396.10.1152/ajpcell.00430.2009Suche in Google Scholar PubMed PubMed Central

Boassa, D., Ambrosi, C., Qiu, F., Dahl, G., Gaietta, G., and Sosinsky, G. (2007). Pannexin1 channels contain a glycosylation site that targets the hexamer to the plasma membrane. J. Biol. Chem. 282, 31733–31743.10.1074/jbc.M702422200Suche in Google Scholar PubMed

Bortner, C.D. and Cidlowski, J.A. (1998). A necessary role for cell shrinkage in apoptosis. Biochem. Pharmacol. 56, 1549–1559.10.1016/S0006-2952(98)00225-1Suche in Google Scholar

Bortner, C.D., and Cidlowski, J.A. (2007). Cell shrinkage and monovalent cation fluxes: role in apoptosis. Arch. Biochem. Biophys. 462, 176–188.10.1016/j.abb.2007.01.020Suche in Google Scholar PubMed PubMed Central

Bowens, N.H., Dohare, P., Kuo, Y.H., and Mongin, A.A. (2013). DCPIB, the proposed selective blocker of volume-regulated anion channels, inhibits several glutamate transport pathways in glial cells. Mol. Pharmacol. 83, 22–32.10.1124/mol.112.080457Suche in Google Scholar PubMed PubMed Central

Burnstock, G. (2008). Purinergic signalling and disorders of the central nervous system. Nat. Rev. Drug Discov. 7, 575–590.10.1038/nrd2605Suche in Google Scholar PubMed

Burow, P., Klapperstück, M., and Markwardt, F. (2014). Activation of ATP secretion via volume-regulated anion channels by sphingosine-1-phosphate in RAW macrophages. Pflügers Arch., electr prepub. DOI: 10.1007/s00424-014-1561-8.10.1007/s00424-014-1561-8Suche in Google Scholar PubMed

Cahalan, M.D. and Lewis, R.S. (1988). Role of potassium and chloride channels in volume regulation by T lymphocytes. Soc. Gen. Physiol. Ser. 43, 281–301.Suche in Google Scholar

Cai, S., Zhang, T., Zhang, D., Qiu, G., and Liu, Y. (2015). Volume-sensitive chloride channels are involved in cisplatin treatment of osteosarcoma. Mol. Med. Rep. 11, 2465–2470.10.3892/mmr.2014.3068Suche in Google Scholar PubMed PubMed Central

Catalán, M.A., Kondo, Y., Peña-Münzenmayer, G., Jaramillo, Y., Liu, F., Choi, S., Crandall, E., Borok, Z., Flodby, P., Shull, G.E., et al. (2015). A fluid secretion pathway unmasked by acinar-specific Tmem16A gene ablation in the adult mouse salivary gland. Proc. Natl. Acad. Sci. USA 112, 2263–2268.10.1073/pnas.1415739112Suche in Google Scholar PubMed PubMed Central

Chien, L.T. and Hartzell, H.C. (2007). Drosophila bestrophin-1 chloride current is dually regulated by calcium and cell volume. J. Gen. Physiol. 130, 513–524.10.1085/jgp.200709795Suche in Google Scholar PubMed PubMed Central

Chien, L.T. and Hartzell, H.C. (2008). Rescue of volume-regulated anion current by bestrophin mutants with altered charge selectivity. J. Gen. Physiol. 132, 537–546.10.1085/jgp.200810065Suche in Google Scholar PubMed PubMed Central

Culliford, S.J., Borg, J.J., O’Brien, M.J., and Kozlowski, R.Z. (2004). Differential effects of pyrethroids on volume-sensitive anion and organic osmolyte pathways. Clin. Exp. Pharmacol. Physiol. 31, 134–144.10.1111/j.1440-1681.2004.03965.xSuche in Google Scholar PubMed

De Greef, C., Sehrer, J., Viana, F., van Acker, K., Eggermont, J., Mertens, L., Raeymaekers, L., Droogmans, G., and Nilius, B. (1995). Volume-activated chloride currents are not correlated with P-glycoprotein expression. Biochem. J. 307, 713–718.10.1042/bj3070713Suche in Google Scholar

Decher, N., Lang, H.J., Nilius, B., Brüggemann, A., Busch, A.E., and Steinmeyer, K. (2001). DCPIB is a novel selective blocker of I(Cl,swell) and prevents swelling-induced shortening of guinea-pig atrial action potential duration. Br. J. Pharmacol. 134, 1467–1479.10.1038/sj.bjp.0704413Suche in Google Scholar

Doroshenko, P., Sabanov, V., and Doroshenko, N. (2001). Cell cycle-related changes in regulatory volume decrease and volume-sensitive chloride conductance in mouse fibroblasts. J. Cell. Physiol. 187, 65–72.10.1002/1097-4652(200104)187:1<65::AID-JCP1052>3.0.CO;2-ASuche in Google Scholar

Duan, D., Winter, C., Cowley, S., Hume, J.R., and Horowitz, B. (1997). Molecular identification of a volume-regulated chloride channel. Nature 390, 417–421.10.1038/37151Suche in Google Scholar

Duran, C., Thompson, C.H., Xiao, Q., and Hartzell, H.C. (2010). Chloride channels: often enigmatic, rarely predictable. Annu. Rev. Physiol. 72, 95–121.10.1146/annurev-physiol-021909-135811Suche in Google Scholar

Elliott, M.R., Chekeni, F.B., Trampont, P.C., Lazarowski, E.R., Kadl, A., Walk, S.F., Park, D., Woodson, R.I., Ostankovich, M., Sharma, P., et al. (2009). Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461, 282–286.10.1038/nature08296Suche in Google Scholar

Feustel, P.J., Jin, Y., and Kimelberg, H.K. (2004). Volume-regulated anion channels are the predominant contributors to release of excitatory amino acids in the ischemic cortical penumbra. Stroke 35, 1164–1168.10.1161/01.STR.0000124127.57946.a1Suche in Google Scholar

Fields, R.D. and Ni, Y. (2010). Nonsynaptic communication through ATP release from volume-activated anion channels in axons. Sci. Signal. 3, ra73.10.1126/scisignal.2001128Suche in Google Scholar

Fiévet, B., Gabillat, N., Borgese, F., and Motais, R. (1995). Expression of band 3 anion exchanger induces chloride current and taurine transport: structure-function analysis. EMBO J. 14, 5158–5169.10.1002/j.1460-2075.1995.tb00200.xSuche in Google Scholar

Fisher, S.K., Cheema, T.A., Foster, D.J., and Heacock, A.M. (2008). Volume-dependent osmolyte efflux from neural tissues: regulation by G-protein-coupled receptors. J. Neurochem. 106, 1998–2014.10.1111/j.1471-4159.2008.05510.xSuche in Google Scholar

Foote, C.I., Zhou, L., Zhu, X., and Nicholson, B.J. (1998). The pattern of disulfide linkages in the extracellular loop regions of connexin 32 suggests a model for the docking interface of gap junctions. J. Cell Biol. 140, 1187–1197.10.1083/jcb.140.5.1187Suche in Google Scholar

Franco, R., Panayiotidis, M.I., and de la Paz, L.D. (2008). Autocrine signaling involved in cell volume regulation: the role of released transmitters and plasma membrane receptors. J. Cell. Physiol. 216, 14–28.10.1002/jcp.21406Suche in Google Scholar

Fürst, J., Bazzini, C., Jakab, M., Meyer, G., König, M., Gschwentner, M., Ritter, M., Schmarda, A., Bottà, G., Benz, R., et al. (2000). Functional reconstitution of ICln in lipid bilayers. Pflüger’s Arch. 440, 100–115.10.1007/s004240000250Suche in Google Scholar

Galietta, L.J., Haggie, P.M., and Verkman, A.S. (2001). Green fluorescent protein-based halide indicators with improved chloride and iodide affinities. FEBS Lett. 499, 220–224.10.1016/S0014-5793(01)02561-3Suche in Google Scholar

Gill, D.R., Hyde, S.C., Higgins, C.F., Valverde, M.A., Mintenig, G.M., and Sepúlveda, F.V. (1992). Separation of drug transport and chloride channel functions of the human multidrug resistance P-glycoprotein. Cell 71, 23–32.10.1016/0092-8674(92)90263-CSuche in Google Scholar

Goldstein, L. and Brill, S.R. (1991). Volume-activated taurine efflux from skate erythrocytes: possible band 3 involvement. Am. J. Physiol. 260, R1014–1020.10.1152/ajpregu.1991.260.5.R1014Suche in Google Scholar PubMed

Gong, W., Xu, H., Shimizu, T., Morishima, S., Tanabe, S., Tachibe, T., Uchida, S., Sasaki, S., and Okada, Y. (2004). ClC-3-independent, PKC-dependent activity of volume-sensitive Cl channel in mouse ventricular cardiomyocytes. Cell. Physiol. Biochem. 14, 213–224.10.1159/000080330Suche in Google Scholar PubMed

Grinstein, S., Clarke, C.A., Dupre, A., and Rothstein, A. (1982). Volume-induced increase of anion permeability in human lymphocytes. J. Gen. Physiol. 80, 801–823.10.1085/jgp.80.6.801Suche in Google Scholar PubMed PubMed Central

Gründer, S., Thiemann, A., Pusch, M., and Jentsch, T.J. (1992). Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume. Nature 360, 759–762.10.1038/360759a0Suche in Google Scholar PubMed

Harrigan, T.J., Abdullaev, I.F., Jourd’heuil, D., and Mongin, A.A. (2008). Activation of microglia with zymosan promotes excitatory amino acid release via volume-regulated anion channels: the role of NADPH oxidases. J. Neurochem. 106, 2449–2462.10.1111/j.1471-4159.2008.05553.xSuche in Google Scholar PubMed PubMed Central

Hartzell, H.C., Qu, Z., Yu, K., Xiao, Q., and Chien, L.T. (2008). Molecular physiology of bestrophins: multifunctional membrane proteins linked to best disease and other retinopathies. Physiol. Rev. 88, 639–672.10.1152/physrev.00022.2007Suche in Google Scholar PubMed

Hartzell, H.C., Yu, K., Xiao, Q., Chien, L.T., and Qu, Z. (2009). Anoctamin/TMEM16 family members are Ca2+-activated Cl- channels. J. Physiol. 587, 2127–2139.10.1113/jphysiol.2008.163709Suche in Google Scholar PubMed PubMed Central

Hasegawa, Y., Shimizu, T., Takahashi, N., and Okada, Y. (2012). The apoptotic volume decrease is an upstream event of MAP kinase activation during staurosporine-induced apoptosis in HeLa cells. Int. J. Mol. Sci. 13, 9363–9379.10.3390/ijms13079363Suche in Google Scholar PubMed PubMed Central

Hayashi, T., Nozaki, Y., Nishizuka, M., Ikawa, M., Osada, S., and Imagawa, M. (2011). Factor for adipocyte differentiation 158 gene disruption prevents the body weight gain and insulin resistance induced by a high-fat diet. Biol. Pharm. Bull. 34, 1257–1263.10.1248/bpb.34.1257Suche in Google Scholar PubMed

Haydon, P.G. and Carmignoto, G. (2006). Astrocyte control of synaptic transmission and neurovascular coupling. Physiol. Rev. 86, 1009–1031.10.1152/physrev.00049.2005Suche in Google Scholar PubMed

Hazama, A. and Okada, Y. (1988). Ca2+ sensitivity of volume-regulatory K+ and Cl- channels in cultured human epithelial cells. J. Physiol. 402, 687–702.10.1113/jphysiol.1988.sp017229Suche in Google Scholar PubMed PubMed Central

Hernández-Carballo, C.Y., De Santiago-Castillo, J.A., Rosales-Saavedra, T., Pérez-Cornejo, P., and Arreola, J. (2010). Control of volume-sensitive chloride channel inactivation by the coupled action of intracellular chloride and extracellular protons. Pflüger’s Arch. 460, 633–644.10.1007/s00424-010-0842-0Suche in Google Scholar PubMed PubMed Central

Hisadome, K., Koyama, T., Kimura, C., Droogmans, G., Ito, Y., and Oike, M. (2002). Volume-regulated anion channels serve as an auto/paracrine nucleotide release pathway in aortic endothelial cells. J. Gen. Physiol. 119, 511–520.10.1085/jgp.20028540Suche in Google Scholar PubMed PubMed Central

Hoffmann, E.K. (1978). Regulation of cell volume by selective changes in the leak permeabilities of Ehrlich ascites tumor cells. Alfred Benzon Symp. XI, 397–417.Suche in Google Scholar

Hoffmann, E.K., Schettino, T., and Marshall, W.S. (2007). The role of volume-sensitive ion transport systems in regulation of epithelial transport. Comp. Biochem. Physiol. 148, 29–43.10.1016/j.cbpa.2006.11.023Suche in Google Scholar PubMed

Hoffmann, E.K., Lambert, I.H., and Pedersen, S.F. (2009). Physiology of cell volume regulation in vertebrates. Physiol. Rev. 89, 193–277.10.1152/physrev.00037.2007Suche in Google Scholar PubMed

Hoffmann, E.K., Holm, N.B., and Lambert, I.H. (2014). Functions of volume-sensitive and calcium-activated chloride channels. IUBMB Life 66, 257–267.10.1002/iub.1266Suche in Google Scholar PubMed

Hofmann, A., Gerrits, B., Schmidt, A., Bock, T., Bausch-Fluck, D., Aebersold, R., and Wollscheid, B. (2010). Proteomic cell surface phenotyping of differentiating acute myeloid leukemia cells. Blood 116, e26–34.10.1182/blood-2010-02-271270Suche in Google Scholar PubMed

Hübner, C.A., Schroeder, B.C., and Ehmke, H. (2015). Regulation of vascular tone and arterial blood pressure: role of chloride transport in vascular smooth muscle. Pflüger’s Arch. 467, 605–614.10.1007/s00424-014-1684-ySuche in Google Scholar PubMed

Hyzinski-García, M.C., Rudkouskaya, A., and Mongin, A.A. (2014). LRRC8A protein is indispensable for swelling-activated and ATP-induced release of excitatory amino acids in rat astrocytes. J. Physiol. 592, 4855–4862.10.1113/jphysiol.2014.278887Suche in Google Scholar PubMed PubMed Central

Ichikawa, M., Okamura-Oho, Y., Shimokawa, K., Kondo, S., Nakamura, S., Yokota, H., Himeno, R., Lesch, K.P., and Hayashizaki, Y. (2008). Expression analysis for inverted effects of serotonin transporter inactivation. Biochem. Biophys. Res. Commun. 368, 43–49.10.1016/j.bbrc.2008.01.041Suche in Google Scholar PubMed

Idzko, M., Ferrari, D., and Eltzschig, H.K. (2014). Nucleotide signalling during inflammation. Nature 509, 310–317.10.1038/nature13085Suche in Google Scholar PubMed PubMed Central

Inoue, H., Ohtaki, H., Nakamachi, T., Shioda, S., and Okada, Y. (2007). Anion channel blockers attenuate delayed neuronal cell death induced by transient forebrain ischemia. J. Neurosci. Res. 85, 1427–1435.10.1002/jnr.21279Suche in Google Scholar PubMed

Jackson, P.S. and Strange, K. (1993). Volume-sensitive anion channels mediate swelling-activated inositol and taurine efflux. Am. J. Physiol. 265, C1489–1500.10.1152/ajpcell.1993.265.6.C1489Suche in Google Scholar PubMed

Jackson, P.S. and Strange, K. (1995). Characterization of the voltage-dependent properties of a volume-sensitive anion conductance. J. Gen. Physiol. 105, 661–676.10.1085/jgp.105.5.661Suche in Google Scholar PubMed PubMed Central

Jentsch, T.J., Stein, V., Weinreich, F., and Zdebik, A.A. (2002). Molecular structure and physiological function of chloride channels. Physiol. Rev. 82, 503–568.10.1152/physrev.00029.2001Suche in Google Scholar PubMed

Juul, C.A., Grubb, S., Poulsen, K.A., Kyed, T., Hashem, N., Lambert, I.H., Larsen, E.H., and Hoffmann, E.K. (2014). Anoctamin 6 differs from VRAC and VSOAC but is involved in apoptosis and supports volume regulation in the presence of Ca2+. Pflüger’s Arch. 466, 1899–1910.10.1007/s00424-013-1428-4Suche in Google Scholar

Kenagy, R.D., Min, S.K., Mulvihill, E., and Clowes, A.W. (2011). A link between smooth muscle cell death and extracellular matrix degradation during vascular atrophy. J. Vasc. Surg. 54, 182–191 e124.10.1016/j.jvs.2010.12.070Suche in Google Scholar

Kimelberg, H.K. (2005). Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy. Glia 50, 389–397.10.1002/glia.20174Suche in Google Scholar

Kimelberg, H.K., Goderie, S.K., Higman, S., Pang, S., and Waniewski, R.A. (1990). Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. J. Neurosci. 10, 1583–1591.10.1523/JNEUROSCI.10-05-01583.1990Suche in Google Scholar

Kimelberg, H.K., Feustel, P.J., Jin, Y., Paquette, J., Boulos, A., Keller, R.W., Jr., and Tranmer, B.I. (2000). Acute treatment with tamoxifen reduces ischemic damage following middle cerebral artery occlusion. Neuroreport 11, 2675–2679.10.1097/00001756-200008210-00014Suche in Google Scholar

Kirk, K. and Kirk, J. (1993). Volume-regulatory taurine release from a human lung cancer cell line. Evidence for amino acid transport via a volume-activated chloride channel. FEBS Lett. 336, 153–158.10.1016/0014-5793(93)81630-ISuche in Google Scholar

Kirk, K., Ellory, J.C., and Young, J.D. (1992). Transport of organic substrates via a volume-activated channel. J. Biol. Chem. 267, 23475–23478.10.1016/S0021-9258(18)35862-9Suche in Google Scholar

Klausen, T.K., Bergdahl, A., Hougaard, C., Christophersen, P., Pedersen, S.F., and Hoffmann, E.K. (2007). Cell cycle- dependent activity of the volume- and Ca2+-activated anion currents in Ehrlich lettre ascites cells. J. Cell. Physiol. 210, 831–842.10.1002/jcp.20918Suche in Google Scholar

Kobe, B., and Kajava, A.V. (2001). The leucine-rich repeat as a protein recognition motif. Curr. Opin. Struct. Biol. 11, 725–732.10.1016/S0959-440X(01)00266-4Suche in Google Scholar

Kondratskyi, A., Kondratska, K., Skryma, R., and Prevarskaya, N. (2014). Ion channels in the regulation of apoptosis. Biochim. Biophys. Acta. DOI: 10.1016/j.bbamem.2014.10.03010.1016/j.bbamem.2014.10.030Suche in Google Scholar PubMed

Koyama, T., Oike, M., and Ito, Y. (2001). Involvement of Rho-kinase and tyrosine kinase in hypotonic stress-induced ATP release in bovine aortic endothelial cells. J. Physiol. 532, 759–769.10.1111/j.1469-7793.2001.0759e.xSuche in Google Scholar

Kubota, K., Kim, J.Y., Sawada, A., Tokimasa, S., Fujisaki, H., Matsuda-Hashii, Y., Ozono, K., and Hara, J. (2004). LRRC8 involved in B cell development belongs to a novel family of leucine-rich repeat proteins. FEBS Lett. 564, 147–152.10.1016/S0014-5793(04)00332-1Suche in Google Scholar

Kumar, L., Chou, J., Yee, C.S., Borzutzky, A., Vollmann, E.H., von Andrian, U.H., Park, S.Y., Hollander, G., Manis, J.P., Poliani, P.L., et al. (2014). Leucine-rich repeat containing 8A (LRRC8A) is essential for T lymphocyte development and function. J. Exp. Med. 211, 929–942.10.1084/jem.20131379Suche in Google Scholar PubMed PubMed Central

Lambert, I.H. and Hoffmann, E.K. (1994). Cell swelling activates separate taurine and chloride channels in Ehrlich mouse ascites tumor cells. J. Membr. Biol. 142, 289–298.10.1007/BF00233436Suche in Google Scholar PubMed

Lambert, I.H., Kristensen, D.M., Holm, J.B., and Mortensen, O.H. (2015). Physiological role of taurine-from organism to organelle. Acta Physiol. 213, 191–212.10.1111/apha.12365Suche in Google Scholar PubMed

Lang, F. and Hoffmann, E.K. (2012). Role of ion transport in control of apoptotic cell death. Compr. Physiol. 2, 2037–2061.10.1002/cphy.c110046Suche in Google Scholar PubMed

Lang, F., Busch, G.L., Ritter, M., Volkl, H., Waldegger, S., Gulbins, E., and Haussinger, D. (1998). Functional significance of cell volume regulatory mechanisms. Physiol. Rev. 78, 247–306.10.1152/physrev.1998.78.1.247Suche in Google Scholar PubMed

Lang, F., Shumilina, E., Ritter, M., Gulbins, E., Vereninov, A., and Huber, S.M. (2006). Ion channels and cell volume in regulation of cell proliferation and apoptotic cell death. Contrib. Nephrol. 152, 142–160.10.1159/000096321Suche in Google Scholar PubMed

Leaney, J.L., Marsh, S.J., and Brown, D.A. (1997). A swelling-activated chloride current in rat sympathetic neurones. J. Physiol. 501, 555–564.10.1111/j.1469-7793.1997.555bm.xSuche in Google Scholar PubMed PubMed Central

Lee, E.L., Shimizu, T., Ise, T., Numata, T., Kohno, K., and Okada, Y. (2007). Impaired activity of volume-sensitive Cl- channel is involved in cisplatin resistance of cancer cells. J. Cell. Physiol. 211, 513–521.10.1002/jcp.20961Suche in Google Scholar PubMed

Lee, C.C., Carette, J.E., Brummelkamp, T.R., and Ploegh, H.L. (2013). A reporter screen in a human haploid cell line identifies CYLD as a constitutive inhibitor of NF-κB. PLoS One 8, e70339.10.1371/journal.pone.0070339Suche in Google Scholar PubMed PubMed Central

Lee, C.C., Freinkman, E., Sabatini, D.M., and Ploegh, H.L. (2014). The protein synthesis inhibitor blasticidin s enters mammalian cells via leucine-rich repeat-containing protein 8D. J. Biol. Chem. 289, 17124–17131.10.1074/jbc.M114.571257Suche in Google Scholar PubMed PubMed Central

Lepple-Wienhues, A., Szabo, I., Laun, T., Kaba, N.K., Gulbins, E., and Lang, F. (1998). The tyrosine kinase p56lck mediates activation of swelling-induced chloride channels in lymphocytes. J. Cell Biol. 141, 281–286.10.1083/jcb.141.1.281Suche in Google Scholar PubMed PubMed Central

Li, C., Breton, S., Morrison, R., Cannon, C.L., Emma, F., Sanchez-Olea, R., Bear, C., and Strange, K. (1998). Recombinant pICln forms highly cation-selective channels when reconstituted into artificial and biological membranes. J. Gen. Physiol. 112, 727–736.10.1085/jgp.112.6.727Suche in Google Scholar PubMed PubMed Central

Liu, H.T., Tashmukhamedov, B.A., Inoue, H., Okada, Y., and Sabirov, R.Z. (2006). Roles of two types of anion channels in glutamate release from mouse astrocytes under ischemic or osmotic stress. Glia 54, 343–357.10.1002/glia.20400Suche in Google Scholar PubMed

Liu, H.T., Akita, T., Shimizu, T., Sabirov, R.Z., and Okada, Y. (2009). Bradykinin-induced astrocyte-neuron signalling: glutamate release is mediated by ROS-activated volume-sensitive outwardly rectifying anion channels. J. Physiol. 587, 2197–2209.10.1113/jphysiol.2008.165084Suche in Google Scholar PubMed PubMed Central

Lohman, A.W. and Isakson, B.E. (2014). Differentiating connexin hemichannels and pannexin channels in cellular ATP release. FEBS Lett. 588, 1379–1388.10.1016/j.febslet.2014.02.004Suche in Google Scholar PubMed PubMed Central

Lohman, A.W., Billaud, M., and Isakson, B.E. (2012). Mechanisms of ATP release and signalling in the blood vessel wall. Cardiovasc. Res. 95, 269–280.10.1093/cvr/cvs187Suche in Google Scholar PubMed PubMed Central

Maeno, E., Ishizaki, Y., Kanaseki, T., Hazama, A., and Okada, Y. (2000). Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc. Natl. Acad. Sci. USA 97, 9487–9492.10.1073/pnas.140216197Suche in Google Scholar PubMed PubMed Central

Manolopoulos, V.G., Voets, T., Declercq, P.E., Droogmans, G., and Nilius, B. (1997). Swelling-activated efflux of taurine and other organic osmolytes in endothelial cells. Am. J. Physiol. 273, C214–222.10.1152/ajpcell.1997.273.1.C214Suche in Google Scholar PubMed

Mao, J., Wang, L., Fan, A., Wang, J., Xu, B., Jacob, T.J., and Chen, L. (2007). Blockage of volume-activated chloride channels inhibits migration of nasopharyngeal carcinoma cells. Cell. Physiol. Biochem. 19, 249–258.10.1159/000100644Suche in Google Scholar

Min, X.J., Li, H., Hou, S.C., He, W., Liu, J., Hu, B., and Wang, J. (2011). Dysfunction of volume-sensitive chloride channels contributes to cisplatin resistance in human lung adenocarcinoma cells. Exp. Biol. Med. 236, 483–491.10.1258/ebm.2011.010297Suche in Google Scholar

Mongin, A.A. and Kimelberg, H.K. (2002). ATP potently modulates anion channel-mediated excitatory amino acid release from cultured astrocytes. Am. J. Physiol. 283, C569–578.10.1152/ajpcell.00438.2001Suche in Google Scholar

Mongin, A.A. and Orlov, S.N. (2001). Mechanisms of cell volume regulation and possible nature of the cell volume sensor. Pathophysiology 8, 77–88.10.1016/S0928-4680(01)00074-8Suche in Google Scholar

Moorman, J.R., Ackerman, S.J., Kowdley, G.C., Griffin, M.P., Mounsey, J.P., Chen, Z., Cala, S.E., O’Brian, J.J., Szabo, G., and Jones, L.R. (1995). Unitary anion currents through phospholemman channel molecules. Nature 377, 737–740.10.1038/377737a0Suche in Google Scholar

Nielsen, M.S., Axelsen, L.N., Sorgen, P.L., Verma, V., Delmar, M., and Holstein-Rathlou, N.H. (2012). Gap junctions. Compr. Physiol. 2, 1981–2035.10.1002/cphy.c110051Suche in Google Scholar

Nilius, B., Sehrer, J., Viana, F., De Greef, C., Raeymaekers, L., Eggermont, J., and Droogmans, G. (1994). Volume-activated Cl- currents in different mammalian non-excitable cell types. Pflügers Arch. 428, 364–371.10.1007/BF00724520Suche in Google Scholar

Nilius, B., Eggermont, J., Voets, T., Buyse, G., Manolopoulos, V., and Droogmans, G. (1997a). Properties of volume-regulated anion channels in mammalian cells. Prog. Biophys. Mol. Biol. 68, 69–119.10.1016/S0079-6107(97)00021-7Suche in Google Scholar

Nilius, B., Prenen, J., Kamouchi, M., Viana, F., Voets, T., and Droogmans, G. (1997b). Inhibition by mibefradil, a novel calcium channel antagonist, of Ca2+- and volume-activated Cl- channels in macrovascular endothelial cells. Br. J. Pharmacol. 121, 547–555.10.1038/sj.bjp.0701140Suche in Google Scholar PubMed PubMed Central

Nilius, B., Prenen, J., and Droogmans, G. (1998). Modulation of volume-regulated anion channels by extra- and intracellular pH. Pflügers Arch. 436, 742–748.10.1007/s004240050697Suche in Google Scholar PubMed

Okada, Y. (1997). Volume expansion-sensing outward-rectifier Cl- channel: fresh start to the molecular identity and volume sensor. Am. J. Physiol. 273, C755–789.10.1152/ajpcell.1997.273.3.C755Suche in Google Scholar PubMed

Okada, Y., Shimizu, T., Maeno, E., Tanabe, S., Wang, X., and Takahashi, N. (2006). Volume-sensitive chloride channels involved in apoptotic volume decrease and cell death. J. Membr. Biol. 209, 21–29.10.1007/s00232-005-0836-6Suche in Google Scholar PubMed

Okada, Y., Sato, K., and Numata, T. (2009). Pathophysiology and puzzles of the volume-sensitive outwardly rectifying anion channel. J. Physiol. 587, 2141–2149.Suche in Google Scholar

Orlov, S.N., Platonova, A.A., Hamet, P., and Grygorczyk, R. (2013). Cell volume and monovalent ion transporters: their role in cell death machinery triggering and progression. Am. J. Physiol. 305, C361–372.10.1152/ajpcell.00040.2013Suche in Google Scholar PubMed

Paulmichl, M., Li, Y., Wickman, K., Ackerman, M., Peralta, E., and Clapham, D. (1992). New mammalian chloride channel identified by expression cloning. Nature 356, 238–241.10.1038/356238a0Suche in Google Scholar PubMed

Pedersen, S.F., Beisner, K.H., Hougaard, C., Willumsen, B.M., Lambert, I.H., and Hoffmann, E.K. (2002). Rho family GTP binding proteins are involved in the regulatory volume decrease process in NIH3T3 mouse fibroblasts. J. Physiol. 541, 779–796.10.1113/jphysiol.2002.018887Suche in Google Scholar PubMed PubMed Central

Pedersen, S.F., Hoffmann, E.K., and Novak, I. (2013). Cell volume regulation in epithelial physiology and cancer. Front. Physiol. 4, 233.10.3389/fphys.2013.00233Suche in Google Scholar PubMed PubMed Central

Pedersen, S.F., Klausen, T.K., and Nilius, B. (2015). The identification of a volume-regulated anion channel: an amazing Odyssey. Acta Physiol. 213, 868–881.10.1111/apha.12450Suche in Google Scholar PubMed

Penuela, S., Gehi, R., and Laird, D.W. (2013). The biochemistry and function of pannexin channels. Biochim. Biophys. Acta 1828, 15–22.10.1016/j.bbamem.2012.01.017Suche in Google Scholar PubMed

Piepoli, A., Palmieri, O., Maglietta, R., Panza, A., Cattaneo, E., Latiano, A., Laczko, E., Gentile, A., Carella, M., Mazzoccoli, G., et al. (2012). The expression of leucine-rich repeat gene family members in colorectal cancer. Exp. Biol. Med. 237, 1123–1128.10.1258/ebm.2012.012042Suche in Google Scholar PubMed

Poulsen, K.A., Andersen, E.C., Hansen, C.F., Klausen, T.K., Hougaard, C., Lambert, I.H., and Hoffmann, E.K. (2010). Deregulation of apoptotic volume decrease and ionic movements in multidrug-resistant tumor cells: role of chloride channels. Am. J. Physiol. 298, C14–25.10.1152/ajpcell.00654.2008Suche in Google Scholar PubMed

Pu, W.T., Krapivinsky, G.B., Krapivinsky, L., and Clapham, D.E. (1999). pICln inhibits snRNP biogenesis by binding core spliceosomal proteins. Mol. Cell. Biol. 19, 4113–4120.10.1128/MCB.19.6.4113Suche in Google Scholar

Qiu, F., Wang, J. and Dahl, G. (2012). Alanine substitution scanning of pannexin1 reveals amino acid residues mediating ATP sensitivity. Purinergic Signal. 8, 81–90.10.1007/s11302-011-9263-6Suche in Google Scholar

Qiu, Z., Dubin, A.E., Mathur, J., Tu, B., Reddy, K., Miraglia, L.J., Reinhardt, J., Orth, A.P., and Patapoutian, A. (2014). SWELL1, a plasma membrane protein, is an essential component of volume-regulated anion channel. Cell 157, 447–458.10.1016/j.cell.2014.03.024Suche in Google Scholar

Rosell, A., Vilalta, A., García-Berrocoso, T., Fernández-Cadenas, I., Domingues-Montanari, S., Cuadrado, E., Delgado, P., Ribó, M., Martínez-Sáez, E., Ortega-Aznar, A., et al. (2011). Brain perihematoma genomic profile following spontaneous human intracerebral hemorrhage. PLoS One 6, e16750.10.1371/journal.pone.0016750Suche in Google Scholar

Roy, G. (1995). Amino acid current through anion channels in cultured human glial cells. J. Membr. Biol. 147, 35–44.10.1007/BF00235396Suche in Google Scholar

Sáez, J.C. and Leybaert, L. (2014). Hunting for connexin hemichannels. FEBS Lett. 588, 1205–1211.10.1016/j.febslet.2014.03.004Suche in Google Scholar

Sánchez-Olea, R., Fuller, C., Benos, D., and Pasantes-Morales, H. (1995). Volume-associated osmolyte fluxes in cell lines with or without the anion exchanger. Am. J. Physiol. 269, C1280–1286.10.1152/ajpcell.1995.269.5.C1280Suche in Google Scholar

Sawada, A., Takihara, Y., Kim, J.Y., Matsuda-Hashii, Y., Tokimasa, S., Fujisaki, H., Kubota, K., Endo, H., Onodera, T., Ohta, H., et al. (2003). A congenital mutation of the novel gene LRRC8 causes agammaglobulinemia in humans. J. Clin. Invest. 112, 1707–1713.10.1172/JCI18937Suche in Google Scholar

Schlichter, L.C., Sakellaropoulos, G., Ballyk, B., Pennefather, P.S., and Phipps, D.J. (1996). Properties of K+ and Cl- channels and their involvement in proliferation of rat microglial cells. Glia 17, 225–236.10.1002/(SICI)1098-1136(199607)17:3<225::AID-GLIA5>3.0.CO;2-#Suche in Google Scholar

Schumacher, P.A., Sakellaropoulos, G., Phipps, D.J., and Schlichter, L.C. (1995). Small-conductance chloride channels in human peripheral T lymphocytes. J. Membr. Biol. 145, 217–232.10.1007/BF00232714Suche in Google Scholar

Schwab, A., Fabian, A., Hanley, P.J., and Stock, C. (2012). Role of ion channels and transporters in cell migration. Physiol. Rev. 92, 1865–1913.10.1152/physrev.00018.2011Suche in Google Scholar PubMed

Shen, M.R., Droogmans, G., Eggermont, J., Voets, T., Ellory, J.C., and Nilius, B. (2000). Differential expression of volume-regulated anion channels during cell cycle progression of human cervical cancer cells. J. Physiol. 529 Pt 2, 385–394.10.1111/j.1469-7793.2000.00385.xSuche in Google Scholar PubMed PubMed Central

Shen, M., Wang, L., Wang, B., Wang, T., Yang, G., Shen, L., Wang, T., Guo, X., Liu, Y., Xia, Y., et al. (2014). Activation of volume-sensitive outwardly rectifying chloride channel by ROS contributes to ER stress and cardiac contractile dysfunction: involvement of CHOP through Wnt. Cell Death Dis. 5, e1528.10.1038/cddis.2014.479Suche in Google Scholar PubMed PubMed Central

Shennan, D.B. (2008). Swelling-induced taurine transport: relationship with chloride channels, anion-exchangers and other swelling-activated transport pathways. Cell. Physiol. Biochem. 21, 15–28.10.1159/000113743Suche in Google Scholar PubMed

Shimizu, T., Numata, T., and Okada, Y. (2004). A role of reactive oxygen species in apoptotic activation of volume-sensitive Cl- channel. Proc. Natl. Acad. Sci. USA 101, 6770–6773.10.1073/pnas.0401604101Suche in Google Scholar PubMed PubMed Central

Shimizu, T., Iehara, T., Sato, K., Fujii, T., Sakai, H., and Okada, Y. (2013). TMEM16F is a component of a Ca2+-activated Cl- channel but not a volume-sensitive outwardly rectifying Cl- channel. Am. J. Physiol. 304, C748–759.10.1152/ajpcell.00228.2012Suche in Google Scholar PubMed

Shimizu, T., Ohtake, H., Fujii, T., Tabuchi, Y., and Sakai, H. (2015). Volume-sensitive outwardly rectifying Cl- channels contribute to butyrate-triggered apoptosis of murine colonic epithelial MCE301 cells. J. Physiol. Sci. 65, 151–157.10.1007/s12576-014-0352-5Suche in Google Scholar PubMed

Siebert, A.P., Ma, Z., Grevet, J.D., Demuro, A., Parker, I., and Foskett, J.K. (2013). Structural and functional similarities of calcium homeostasis modulator 1 (CALHM1) ion channel with connexins, pannexins, and innexins. J. Biol. Chem. 288, 6140–6153.10.1074/jbc.M112.409789Suche in Google Scholar PubMed PubMed Central

Smits, G. and Kajava, A.V. (2004). LRRC8 extracellular domain is composed of 17 leucine-rich repeats. Mol. Immunol. 41, 561–562.10.1016/j.molimm.2004.04.001Suche in Google Scholar PubMed

Sørensen, B.H., Thorsteinsdottir, U.A., and Lambert, I.H. (2014). Acquired cisplatin resistance in human ovarian A2780 cancer cells correlates with shift in taurine homeostasis and ability to volume regulate. Am. J. Physiol. 307, C1071–1080.10.1152/ajpcell.00274.2014Suche in Google Scholar PubMed

Soroceanu, L., Manning, T.J., Jr., and Sontheimer, H. (1999). Modulation of glioma cell migration and invasion using Cl- and K+ ion channel blockers. J. Neurosci. 19, 5942–5954.10.1523/JNEUROSCI.19-14-05942.1999Suche in Google Scholar

Stobrawa, S.M., Breiderhoff, T., Takamori, S., Engel, D., Schweizer, M., Zdebik, A.A., Bösl, M.R., Ruether, K., Jahn, H., Draguhn, A., et al. (2001). Disruption of ClC-3, a chloride channel expressed on synaptic vesicles, leads to a loss of the hippocampus. Neuron 29, 185–196.10.1016/S0896-6273(01)00189-1Suche in Google Scholar

Stotz, S.C., and Clapham, D.E. (2012). Anion-sensitive fluorophore identifies the Drosophila swell-activated chloride channel in a genome-wide RNA interference screen. PLoS One 7, e46865.10.1371/journal.pone.0046865Suche in Google Scholar PubMed PubMed Central

Strange, K. and Jackson, P.S. (1995). Swelling-activated organic osmolyte efflux: a new role for anion channels. Kidney Int. 48, 994–1003.10.1038/ki.1995.381Suche in Google Scholar PubMed

Strange, K., Emma, F., and Jackson, P.S. (1996). Cellular and molecular physiology of volume-sensitive anion channels. Am. J. Physiol. 270, C711–730.10.1152/ajpcell.1996.270.3.C711Suche in Google Scholar PubMed

Stutzin, A., Torres, R., Oporto, M., Pacheco, P., Eguiguren, A.L., Cid, L.P., and Sepúlveda, F.V. (1999). Separate taurine and chloride efflux pathways activated during regulatory volume decrease. Am. J. Physiol. 277, C392–402.10.1152/ajpcell.1999.277.3.C392Suche in Google Scholar PubMed

Thiemann, A., Gründer, S., Pusch, M., and Jentsch, T.J. (1992). A chloride channel widely expressed in epithelial and non-epithelial cells. Nature 356, 57–60.10.1038/356057a0Suche in Google Scholar PubMed

Tomassen, S.F., Fekkes, D., de Jonge, H.R., and Tilly, B.C. (2004). Osmotic swelling-provoked release of organic osmolytes in human intestinal epithelial cells. Am. J. Physiol. 286, C1417–1422.10.1152/ajpcell.00468.2003Suche in Google Scholar PubMed

Tominaga, M., Tominaga, T., Miwa, A., and Okada, Y. (1995). Volume-sensitive chloride channel activity does not depend on endogenous P-glycoprotein. J. Biol. Chem. 270, 27887–27893.10.1074/jbc.270.46.27887Suche in Google Scholar PubMed

Tominaga, K., Kondo, C., Kagata, T., Hishida, T., Nishizuka, M., and Imagawa, M. (2004). The novel gene fad158, having a transmembrane domain and leucine-rich repeat, stimulates adipocyte differentiation. J. Biol. Chem. 279, 34840–34848.10.1074/jbc.M312927200Suche in Google Scholar PubMed

Tsumura, T., Oiki, S., Ueda, S., Okuma, M., and Okada, Y. (1996). Sensitivity of volume-sensitive Cl- conductance in human epithelial cells to extracellular nucleotides. Am. J. Physiol. 271, C1872–1878.10.1152/ajpcell.1996.271.6.C1872Suche in Google Scholar PubMed

Vakili, A., Hosseinzadeh, S.A., and Khorasani, M.Z. (2009). Peripheral administration of carbenoxolone reduces ischemic reperfusion injury in transient model of cerebral ischemia. J. Stroke Cerebrovasc. Dis. 18, 81–85.10.1016/j.jstrokecerebrovasdis.2008.09.018Suche in Google Scholar PubMed

Valverde, M.A., Diaz, M., Sepúlveda, F.V., Gill, D.R., Hyde, S.C., and Higgins, C.F. (1992). Volume-regulated chloride channels associated with the human multidrug- resistance P-glycoprotein. Nature 355, 830–833.10.1038/355830a0Suche in Google Scholar PubMed

Vandenberg, J.I., Yoshida, A., Kirk, K., and Powell, T. (1994). Swelling-activated and isoprenaline-activated chloride currents in guinea pig cardiac myocytes have distinct electrophysiology and pharmacology. J. Gen. Physiol. 104, 997–1017.10.1085/jgp.104.6.997Suche in Google Scholar PubMed PubMed Central

Verdon, B., Winpenny, J.P., Whitfield, K.J., Argent, B.E., and Gray, M.A. (1995). Volume-activated chloride currents in pancreatic duct cells. J. Membr. Biol. 147, 173–183.10.1007/BF00233545Suche in Google Scholar PubMed

Voets, T., Szucs, G., Droogmans, G., and Nilius, B. (1995). Blockers of volume-activated Cl- currents inhibit endothelial cell proliferation. Pflügers Arch. 431, 132–134.10.1007/BF00374387Suche in Google Scholar PubMed

Voets, T., Buyse, G., Tytgat, J., Droogmans, G., Eggermont, J., and Nilius, B. (1996). The chloride current induced by expression of the protein pICln in Xenopus oocytes differs from the endogenous volume-sensitive chloride current. J. Physiol. 495, 441–447.10.1113/jphysiol.1996.sp021605Suche in Google Scholar PubMed PubMed Central

Voss, F.K., Ullrich, F., Münch, J., Lazarow, K., Lutter, D., Mah, N., Andrade-Navarro, M.A., von Kries, J.P., Stauber, T., and Jentsch, T.J. (2014). Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science 344, 634–638.10.1126/science.1252826Suche in Google Scholar PubMed

Wang, J., Ambrosi, C., Qiu, F., Jackson, D.G., Sosinsky, G., and Dahl, G. (2014). The membrane protein Pannexin1 forms two open-channel conformations depending on the mode of activation. Sci. Signal. 7, ra69.10.1126/scisignal.2005431Suche in Google Scholar PubMed PubMed Central

Wehner, F. (2006). Cell volume-regulated cation channels. Contrib. Nephrol. 152, 25–53.10.1159/000096315Suche in Google Scholar PubMed

Wilfinger, J., Seuter, S., Tuomainen, T.P., Virtanen, J.K., Voutilainen, S., Nurmi, T., de Mello, V.D., Uusitupa, M., and Carlberg, C. (2014). Primary vitamin D receptor target genes as biomarkers for the vitamin D3 status in the hematopoietic system. J. Nutr. Biochem. 25, 875–884.10.1016/j.jnutbio.2014.04.002Suche in Google Scholar PubMed

Wilhelm, M., Schlegl, J., Hahne, H., Moghaddas Gholami, A., Lieberenz, M., Savitski, M.M., Ziegler, E., Butzmann, L., Gessulat, S., Marx, H., et al. (2014). Mass-spectrometry-based draft of the human proteome. Nature 509, 582–587.10.1038/nature13319Suche in Google Scholar PubMed

Zhang, Y., Zhang, H., Feustel, P.J., and Kimelberg, H.K. (2008). DCPIB, a specific inhibitor of volume regulated anion channels (VRACs), reduces infarct size in MCAo and the release of glutamate in the ischemic cortical penumbra. Exp. Neurol. 210, 514–520.10.1016/j.expneurol.2007.11.027Suche in Google Scholar PubMed PubMed Central

Received: 2015-2-15
Accepted: 2015-4-2
Published Online: 2015-4-14
Published in Print: 2015-9-1

©2015 by De Gruyter

Artikel in diesem Heft

  1. Frontmatter
  2. Meeting Report
  3. Membrane Transport and Communication in Frankfurt: Speakers’ Summary – Highlights
  4. HIGHLIGHT: MEMBRANE TRANSPORT AND COMMUNICATION
  5. Structure, function, evolution, and application of bacterial Pnu-type vitamin transporters
  6. Team work at its best – TAPL and its two domains
  7. The volume-regulated anion channel is formed by LRRC8 heteromers – molecular identification and roles in membrane transport and physiology
  8. Extending native mass spectrometry approaches to integral membrane proteins
  9. Functional diversity of the superfamily of K+ transporters to meet various requirements
  10. The structure of Na+-translocating of NADH:ubiquinone oxidoreductase of Vibrio cholerae: implications on coupling between electron transfer and Na+ transport
  11. Hybrid rotors in F1Fo ATP synthases: subunit composition, distribution, and physiological significance
  12. Homeostatic control of biological membranes by dedicated lipid and membrane packing sensors
  13. The transporter associated with antigen processing: a key player in adaptive immunity
  14. The pseudo-atomic structure of an RND-type tripartite multidrug efflux pump
  15. The assembly and disassembly of the AcrAB-TolC three-component multidrug efflux pump
  16. A universal mechanism for transport and regulation of CPA sodium proton exchangers
  17. Biosynthesis of membrane dependent proteins in insect cell lysates: identification of limiting parameters for folding and processing
  18. Fluorescence and excited state dynamics of the deprotonated Schiff base retinal in proteorhodopsin
  19. Regulatory role of charged clusters in the N-terminal domain of BetP from Corynebacterium glutamicum
  20. The contribution of methionine to the stability of the Escherichia coli MetNIQ ABC transporter-substrate binding protein complex
  21. The ABC exporter MsbA probed by solid state NMR – challenges and opportunities
  22. Functional properties of LptA and LptD in Anabaena sp. PCC 7120
Heruntergeladen am 18.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2015-0127/html
Button zum nach oben scrollen