Startseite The contribution of methionine to the stability of the Escherichia coli MetNIQ ABC transporter-substrate binding protein complex
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The contribution of methionine to the stability of the Escherichia coli MetNIQ ABC transporter-substrate binding protein complex

  • Phong T. Nguyen , Qi Wen Li , Neena S. Kadaba , Jeffrey Y. Lai , Janet G. Yang und Douglas C. Rees EMAIL logo
Veröffentlicht/Copyright: 23. März 2015

Abstract

Despite the ubiquitous role of ATP-binding cassette (ABC) importers in nutrient uptake, only the Escherichia coli maltose and vitamin B12 ABC transporters have been structurally characterized in multiple conformations relevant to the alternating access transport mechanism. To complement our previous structure determination of the E. coli MetNI methionine importer in the inward facing conformation (Kadaba et al. (2008) Science 321, 250–253), we have explored conditions stabilizing the outward facing conformation. Using two variants, the Walker B E166Q mutation with ATP+EDTA to stabilize MetNI in the ATP-bound conformation and the N229A variant of the binding protein MetQ, shown in this work to disrupt methionine binding, a high affinity MetNIQ complex was formed with a dissociation constant measured to be 27 nm. Using wild type MetQ containing a co-purified methionine (for which the crystal structure is reported at 1.6 Å resolution), the dissociation constant for complex formation with MetNI is measured to be ∼40-fold weaker, indicating that complex formation lowers the affinity of MetQ for methionine by this amount. Preparation of a stable MetNIQ complex is an essential step towards the crystallographic analysis of the outward facing conformation, a key intermediate in the uptake of methionine by this transport system.


Corresponding author: Douglas C. Rees, Division of Chemistry and Chemical Engineering 114-96, California Institute of Technology, Pasadena, CA 91125, USA; and Howard Hughes Medical Institute 114-96, California Institute of Technology, Pasadena, CA 91125, USA, e-mail:
aPresent address: California Institute for Quantitative Biosciences (QB3), MC2522, San Francisco, CA 94158, USA

Acknowledgments

A Vietnam International Education Development scholarship from the Vietnam Ministry of Education and Training scholarship to P.T.N, an NSF Graduate Fellowship to Q.W.L., and support of NIH Predoctoral Training Grant T32 GM07737 to N.S.K., are gratefully acknowledged. We thank Allen Lee for generating the original MetNIQ constructs, Christoph Müller for MetNIQ discussions, and Dr. Jens Kaiser and Dr. Nathan Dalleska for assistance with crystallography and ICP-MS, respectively. We gratefully acknowledge the Gordon and Betty Moore Foundation and the Beckman Institute for their generous support of the Molecular Observatory at Caltech and the staff at Beamline 12–2, Stanford Synchrotron Radiation Lightsource (SSRL), for their assistance with data collection. Use of the SSRL, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research, and by the National Institutes of Health, National Institute of General Medical Sciences (including P41GM103393). This project benefited from the use of instrumentation made available by the Caltech Environmental Analysis Center. This work was supported in part by NIH grant GM045162.

References

Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., et al. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D66, 213–221.10.1107/S0907444909052925Suche in Google Scholar PubMed PubMed Central

Ames, G.F., Mimura, C.S., Holbrook, S.R., and Shyamala, V. (1992). Traffic ATPases: a superfamily of transport proteins operating from Escherichia coli to humans. Adv. Enzymol. Relat. Areas Mol. Biol. 65, 1–47.Suche in Google Scholar

Bao, H. and Duong, F. (2012). Discovery of an auto-regulation mechanism for the maltose ABC transporter MalFGK2. PLoS One 7, e34836.10.1371/journal.pone.0034836Suche in Google Scholar PubMed PubMed Central

Berntsson, R.P.-A., Smits, S.H.J., Schmitt, L., Slotboom, D.J., and Poolman, B. (2010). A structural classification of substrate-binding proteins. FEBS Lett. 584, 2606–2617.10.1016/j.febslet.2010.04.043Suche in Google Scholar PubMed

Blattner, F.R., Plunkett, G., Bloch, C.A., Perna, N.T., Burland, V., Riley, M., ColladoVides, J., Glasner, J.D., Rode, C.K., Mayhew, G.F., et al. (1997). The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1462.10.1126/science.277.5331.1453Suche in Google Scholar PubMed

Chen, J., Sharma, S., Quiocho, F.A., and Davidson, A.L. (2001). Trapping the transition state of an ATP-binding cassette transporter: evidence for a concerted mechanism of maltose transport. Proc. Natl. Acad. Sci. USA 98, 1525–1530.10.1073/pnas.98.4.1525Suche in Google Scholar PubMed PubMed Central

Davidson, A.L., Shuman, H.A., and Nikaido, H. (1992). Mechanism of maltose transport in Escherichia coli: Transmembrane signaling by periplasmic binding proteins. Proc. Natl. Acad. Sci. USA 89, 2360–2364.10.1073/pnas.89.6.2360Suche in Google Scholar PubMed PubMed Central

Deka, R.K., Neil, L., Hagman, K.E., Machius, M., Tomchick, D.R., Brautigam, C.A., and Norgard, M.V. (2004). Structural evidence that the 32-kilodalton lipoprotein (Tp32) of Treponema pallidum is an L-methionine-binding protein. J. Biol. Chem. 279, 55644–55650.10.1074/jbc.M409263200Suche in Google Scholar PubMed

Evans, P. (2006). Scaling and assessment of data quality. Acta Crystallogr. D62, 72–82.10.1107/S0907444905036693Suche in Google Scholar PubMed

Gál, J., Szvetnik, A., Schnell, R., and Kálmán, M. (2002). The metD D-methionine transporter locus of Escherichia coli is an ABC transporer gene cluster. J. Bact. 184, 4930–4932.10.1128/JB.184.17.4930-4932.2002Suche in Google Scholar PubMed PubMed Central

Gouridis, G., Schuurman-Wolters, G.K., Ploetz, E., Husada, F., Vietrov, R., de Boer, M., Cordes, T., and Poolman, B. (2015). Conformational dynamics in substrate-binding domains influences transport in the ABC importer GlnPQ. Nat. Struct. Mol. Biol. 22, 57–64.10.1038/nsmb.2929Suche in Google Scholar PubMed

Higgins, C.F. (1992). ABC transporters: from microorganisms to man. Annu. Rev. Cell Biol. 8, 67–113.10.1146/annurev.cb.08.110192.000435Suche in Google Scholar PubMed

Holland, I.B., Cole, S.P.C., Kuchler, K., and Higgins, C.F., eds. (2003). ABC proteins: From Bacteria to Man (London: Academic Press).Suche in Google Scholar

Hollenstein, K., Frei, D.C., and Locher, K.P. (2007). Structure of an ABC transporter in complex with its binding protein. Nature 446, 213–216.10.1038/nature05626Suche in Google Scholar PubMed

Hvorup, R.N., Goetz, B.A., Niederer, M., Hollenstein, K., Perozo, E., and Locher, K.P. (2007). Asymmetry in the structure of the ABC transporter binding protein complex BtuCD-BtuF. Science 317, 1387–1390.10.1126/science.1145950Suche in Google Scholar PubMed

Jardetsky, O. (1966). Simple allosteric model for membrane pumps. Nature 211, 969–970.10.1038/211969a0Suche in Google Scholar PubMed

Johnson, E., Nguyen, P.T., Yeates, T.O., and Rees, D.C. (2012). Inward facing conformations of the MetNI methionine ABC transporter: Implications for the mechanism of transinhibition. Prot. Sci. 21, 84–96.10.1002/pro.765Suche in Google Scholar PubMed PubMed Central

Kabsch, W. (2010). XDS. Acta Crystallogr. D66, 125–132.10.1107/S0907444909047337Suche in Google Scholar PubMed PubMed Central

Kadaba, N.S. (2008). Structural studies of the E. coli methionine ABC transporter and its cognate binding protein (PhD Thesis, Chemistry, California Institute of Technology, Pasadena, CA, USA).Suche in Google Scholar

Kadaba, N.S., Kaiser, J.T., Johnson, E., Lee, A., and Rees, D.C. (2008). The high-affinity E. coli methionine ABC transporter: structure and allosteric regulation. Science 321, 250–253.10.1126/science.1157987Suche in Google Scholar PubMed PubMed Central

Kadner, R.J. (1974). Transport systems for L-methionine in Escherichia coli. J. Bact. 117, 232–241.10.1128/jb.117.1.232-241.1974Suche in Google Scholar PubMed PubMed Central

Kadner, R.J. (1975). Regulation of methionine transport activity in Escherichia coli. J. Bact. 122, 110–119.10.1128/jb.122.1.110-119.1975Suche in Google Scholar PubMed PubMed Central

Korkhov, V.M., Mireku, S.A., and Locher, K.P. (2012). Structure of AMP-PNP-bound vitamin B12 transporter BtuCD-F. Nature 490, 367–372.10.1038/nature11442Suche in Google Scholar PubMed

Korkhov, V.M., Mireku, S.A., Veprintsev, D.B., and Locher, K.P. (2014). Structure of AMP-PNP-bound BtuCD and mechanism of ATP-powered vitamin B12 transport by BtuCD-F. Nat. Struct. Mol. Biol. 21, 1097–1099.10.1038/nsmb.2918Suche in Google Scholar PubMed

Lewinson, O., Lee, A.T., Locher, K.P., and Rees, D.C. (2010). A distinct mechanism for the ABC transporter BtuCD-BtuF revealed by the dynamics of complex formation. Nat. Struct. Mol. Biol. 17, 332–338.10.1038/nsmb.1770Suche in Google Scholar PubMed PubMed Central

Linton, K.J., and Higgins, C.F. (1998). The Escherichia coli ATP-binding cassette (ABC) proteins. Mol. Microbiol. 28, 5–13.10.1046/j.1365-2958.1998.00764.xSuche in Google Scholar PubMed

Locher, K.P. (2008). Structure and mechanism of ATP-binding cassette transporters. Phil. Trans. R. Soc. B. 364, 239–245.10.1098/rstb.2008.0125Suche in Google Scholar PubMed PubMed Central

Merlin, C., Gardiner, G., Durand, S., and Masters, M. (2002). The Escherichia coli metD locus encodes an ABC transporter which includes Abc (MetN), YaeE (MetI), and YaeC (MetQ). J. Bact. 184, 5513–5517.10.1128/JB.184.19.5513-5517.2002Suche in Google Scholar PubMed PubMed Central

Moody, J.E., Millen, L., Binns, D., Hunt, J.F., and Thomas, P.J. (2002). Cooperative, ATP-dependent association of the nucleotide binding cassettes during the catalytic cycle of ATP-binding cassette transporters. J. Biol. Chem. 277, 21111–21114.10.1074/jbc.C200228200Suche in Google Scholar PubMed PubMed Central

Oldham, M.L. and Chen, J. (2011). Crystal structure of the maltose transporter in a pretranslocation intermediate state. Science 332, 1202–1205.10.1126/science.1200767Suche in Google Scholar PubMed

Oldham, M.L., Khare, D., Quiocho, F.A., Davidson, A.L., and Chen, J. (2007). Crystal structure of a catalytic intermediate of the maltose transporter. Nature 450, 515–521.10.1038/nature06264Suche in Google Scholar PubMed

Oldham, M.L., Davidson, A.L., and Chen, J. (2008). Structural insights into ABC transporter mechanism. Curr. Opin. Struct. Biol. 18, 726–733.10.1016/j.sbi.2008.09.007Suche in Google Scholar PubMed PubMed Central

Pal, D. and Chakrabarti, P. (2001). Non-hydrogen bond interactions involving the methionine sulfur atom. J. Biomolec. Struct. Dyn. 19, 115–128.10.1080/07391102.2001.10506725Suche in Google Scholar PubMed

Rees, D.C., Johnson, E., and Lewinson, O. (2009). ABC transporters: the power to change. Nat. Rev. Mol. Cell Biol. 10, 218–227.10.1038/nrm2646Suche in Google Scholar PubMed PubMed Central

Reisinger, V. and Eichacker, L.A. (2006). Analysis of membrane protein complexes by blue native PAGE. Proteomics, 6–15.10.1002/pmic.200600553Suche in Google Scholar PubMed

Widdas, W.F. (1952). Inability of diffusion to account for placental glucose transfer in the sheep and consideration of the kinetics of a possible carrier transfer. J. Physiol. 118, 23–39.10.1113/jphysiol.1952.sp004770Suche in Google Scholar PubMed PubMed Central

Wilkinson, A.J. and Verschueren, K.H.G. (2003). Crystal structures of periplasmic solute-binding proteins in ABC transport complexes illuminate thier function. In: ABC Proteins: From Bacteria to Man, I.B. Holland, S.P.C. Cole, K. Kuchler, and C.F. Higgins, eds. (London, UK: Academic Press), p. 647.Suche in Google Scholar

Williams, W.A., Zhang, R.G., Zhou, M., Joachimiak, G., Gornicki, P., Missiakas, D., and Joachimiak, A. (2004). The membrane-associated lipoprotein-9 GmpC from Staphylococcus aureus binds the dipeptide GlyMet via side chain interactions. Biochemistry 43, 16193–16202.10.1021/bi048877oSuche in Google Scholar PubMed PubMed Central

Winter, G. (2010). xia2: an expert system for macromolecular crystallography data reduction. J Appl. Crystallogr. 43, 186–190.10.1107/S0021889809045701Suche in Google Scholar

Yang, J.G. and Rees, D.C. (2015). The allosteric regulatory mechanism of the Escherichia coli MetNI methionine ATP Binding Cassette (ABC) transporter. J. Biol. Chem. 290, in press, doi:10.1074/jbc.M114.603365.10.1074/jbc.M114.603365Suche in Google Scholar PubMed PubMed Central

Yang, X., Wu, Z.H., Wang, X.Y., Yang, C.T., Xu, H.L., and Shen, Y.Q. (2009). Crystal structure of lipoprotein GNA1946 from Neisseria meningitidis. J. Struct. Biol. 168, 437–443.10.1016/j.jsb.2009.09.001Suche in Google Scholar PubMed

Yu, S., Lee, N.Y., Park, S.J., and Rhee, S. (2011). Crystal structure of Toll-like receptor 2-activating lipoprotein IlpA from Vibria vulnificus. Proteins 79, 1020–1025.10.1002/prot.22929Suche in Google Scholar PubMed

Received: 2015-2-18
Accepted: 2015-3-19
Published Online: 2015-3-23
Published in Print: 2015-9-1

©2015 by De Gruyter

Artikel in diesem Heft

  1. Frontmatter
  2. Meeting Report
  3. Membrane Transport and Communication in Frankfurt: Speakers’ Summary – Highlights
  4. HIGHLIGHT: MEMBRANE TRANSPORT AND COMMUNICATION
  5. Structure, function, evolution, and application of bacterial Pnu-type vitamin transporters
  6. Team work at its best – TAPL and its two domains
  7. The volume-regulated anion channel is formed by LRRC8 heteromers – molecular identification and roles in membrane transport and physiology
  8. Extending native mass spectrometry approaches to integral membrane proteins
  9. Functional diversity of the superfamily of K+ transporters to meet various requirements
  10. The structure of Na+-translocating of NADH:ubiquinone oxidoreductase of Vibrio cholerae: implications on coupling between electron transfer and Na+ transport
  11. Hybrid rotors in F1Fo ATP synthases: subunit composition, distribution, and physiological significance
  12. Homeostatic control of biological membranes by dedicated lipid and membrane packing sensors
  13. The transporter associated with antigen processing: a key player in adaptive immunity
  14. The pseudo-atomic structure of an RND-type tripartite multidrug efflux pump
  15. The assembly and disassembly of the AcrAB-TolC three-component multidrug efflux pump
  16. A universal mechanism for transport and regulation of CPA sodium proton exchangers
  17. Biosynthesis of membrane dependent proteins in insect cell lysates: identification of limiting parameters for folding and processing
  18. Fluorescence and excited state dynamics of the deprotonated Schiff base retinal in proteorhodopsin
  19. Regulatory role of charged clusters in the N-terminal domain of BetP from Corynebacterium glutamicum
  20. The contribution of methionine to the stability of the Escherichia coli MetNIQ ABC transporter-substrate binding protein complex
  21. The ABC exporter MsbA probed by solid state NMR – challenges and opportunities
  22. Functional properties of LptA and LptD in Anabaena sp. PCC 7120
Heruntergeladen am 6.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2015-0131/html
Button zum nach oben scrollen