Startseite Homeostatic control of biological membranes by dedicated lipid and membrane packing sensors
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Homeostatic control of biological membranes by dedicated lipid and membrane packing sensors

  • Kristina Puth

    Kristina Puth studied Biochemistry at the Goethe University Frankfurt and received her Diploma in 2012. Since 2012, she has been a PhD student in the Molecular Membrane Biology group at the Goethe University Frankfurt and had focused her PhD on the molecular basis of lipid-induced ER-stress responses.

    , Harald F. Hofbauer

    Harald F. Hofbauer studied Biochemistry and Molecular Biology at the University of Graz. He received his PhD in 2012 in the group of Sepp D. Kohlwein for his research on obese yeast model scenarios, which was partly performed in the laboratory of Susan A. Henry at Cornell University, Ithaca. He then continued as a PostDoc at the University of Graz in the field of lipotoxicity. In October 2014 he joined the group of Robert Ernst at Goethe University, Frankfurt, focusing on lipid-protein interactions at biological membranes.

    , James P. Sáenz

    James P. Sáenz received his PhD from the MIT-WHOI Joint Program in Chemical Oceanography and is presently a postdoctoral fellow at the MPICBG in the group of Prof. Kai Simons. James’ research interests address the natural history and evolution of the membrane and center on understanding the evolutionary basis for lipid structural diversity. For his postdoctoral research he is studying the properties and functions of a class of bacterial ‘sterol surrogates’ called hopanoids.

    und Robert Ernst

    Robert Ernst received his PhD from the University of Düsseldorf. In his postdoctoral phase at the Whitehead Institute for Biomedical research, he studied mechanisms of protein quality control and degradation. He then moved to the laboratory of Kai Simons to study the crosstalk of lipid and protein homeostasis. Since 2012, he has been an Emmy Noether fellow and junior professor for Molecular Membrane Biology at the Goethe University Frankfurt. In 2014 his group moved to the Buchmann Institute for Molecular Life Sciences.

    EMAIL logo
Veröffentlicht/Copyright: 3. April 2015

Abstract

Biological membranes are dynamic and complex assemblies of lipids and proteins. Eukaryotic lipidomes encompass hundreds of distinct lipid species and we have only begun to understand their role and function. This review focuses on recent advances in the field of lipid sensors and discusses methodical approaches to identify and characterize putative sensor domains. We elaborate on the role of integral and conditionally membrane-associated sensor proteins, their molecular mechanisms, and identify open questions in the emerging field of membrane homeostasis.


Corresponding author: Robert Ernst, Institute of Biochemistry, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, D-60438 Frankfurt/Main, Germany, e-mail:
aKristina Puth and Harald F. Hofbauer: These authors contributed equally to this work.

About the authors

Kristina Puth

Kristina Puth studied Biochemistry at the Goethe University Frankfurt and received her Diploma in 2012. Since 2012, she has been a PhD student in the Molecular Membrane Biology group at the Goethe University Frankfurt and had focused her PhD on the molecular basis of lipid-induced ER-stress responses.

Harald F. Hofbauer

Harald F. Hofbauer studied Biochemistry and Molecular Biology at the University of Graz. He received his PhD in 2012 in the group of Sepp D. Kohlwein for his research on obese yeast model scenarios, which was partly performed in the laboratory of Susan A. Henry at Cornell University, Ithaca. He then continued as a PostDoc at the University of Graz in the field of lipotoxicity. In October 2014 he joined the group of Robert Ernst at Goethe University, Frankfurt, focusing on lipid-protein interactions at biological membranes.

James P. Sáenz

James P. Sáenz received his PhD from the MIT-WHOI Joint Program in Chemical Oceanography and is presently a postdoctoral fellow at the MPICBG in the group of Prof. Kai Simons. James’ research interests address the natural history and evolution of the membrane and center on understanding the evolutionary basis for lipid structural diversity. For his postdoctoral research he is studying the properties and functions of a class of bacterial ‘sterol surrogates’ called hopanoids.

Robert Ernst

Robert Ernst received his PhD from the University of Düsseldorf. In his postdoctoral phase at the Whitehead Institute for Biomedical research, he studied mechanisms of protein quality control and degradation. He then moved to the laboratory of Kai Simons to study the crosstalk of lipid and protein homeostasis. Since 2012, he has been an Emmy Noether fellow and junior professor for Molecular Membrane Biology at the Goethe University Frankfurt. In 2014 his group moved to the Buchmann Institute for Molecular Life Sciences.

Acknowledgments

We apologize to all of our colleagues, whose work could not be cited. R.E. acknowledges the Deutsche Forschungsgemeinschaft for support (Emmy Noether Program ER608/2-1, SFB807 Transport and Communication across Biological Membranes, and the CEF-II Adjunct Investigator Program). The Pymol Molecular Graphics System was used for the representation of α-helices.

References

Adeyo, O., Horn, P.J., Lee, S., Binns, D.D., Chandrahas, A., Chapman, K.D., and Goodman, J.M. (2011). The yeast lipin orthologue Pah1p is important for biogenesis of lipid droplets. J. Cell Biol. 192, 1043–1055.10.1083/jcb.201010111Suche in Google Scholar PubMed PubMed Central

Albanesi, D., Martín, M., Trajtenberg, F., Mansilla, M.C., Haouz, A., Alzari, P.M., de Mendoza, D., and Buschiazzo, A. (2009). Structural plasticity and catalysis regulation of a thermosensor histidine kinase. Proc. Natl. Acad. Sci. USA 106, 16185–16190.10.1073/pnas.0906699106Suche in Google Scholar PubMed PubMed Central

Altabe, S.G., Aguilar, P., Caballero, G.M., and de Mendoza, D. (2003). The Bacillus subtilis acyl lipid desaturase is a Δ5 desaturase. J. Bacteriol. 185, 3228–3231.10.1128/JB.185.10.3228-3231.2003Suche in Google Scholar PubMed PubMed Central

Antonny, B. (2011). Mechanisms of membrane curvature sensing. Annu. Rev. Biochem. 80, 101–123.10.1146/annurev-biochem-052809-155121Suche in Google Scholar PubMed

Bigay, J. and Antonny, B. (2012). Curvature, lipid packing, and electrostatics of membrane organelles, defining cellular territories in determining specificity. Dev. Cell 23, 886–895.10.1016/j.devcel.2012.10.009Suche in Google Scholar PubMed

Brooks, A.J., Dai, W., O’Mara, M.L., Abankwa, D., Chhabra, Y., Pelekanos, R.A., Gardon, O., Tunny, K.A., Blucher, K.M., Morton, C.J., et al. (2014). Mechanism of activation of protein kinase JAK2 by the growth hormone receptor. Science 344, 1249783.10.1126/science.1249783Suche in Google Scholar PubMed

Call, M.E., Schnell, J.R., Xu, C., Lutz, R.A., Chou, J.J., and Wucherpfennig, K.W. (2006). The strucutre of the ζ ζ transmembrane dimer reveals features essential for its assembly with the T cell receptor. Cell 127, 355–368.10.1016/j.cell.2006.08.044Suche in Google Scholar PubMed PubMed Central

Chandra, S., Chen, X., Rizo, J., Jahn, R., and Südhof, T.C. (2003). A broken α-helix in folded α-synuclein. J. Biol. Chem. 278, 15313–15318.10.1074/jbc.M213128200Suche in Google Scholar PubMed

Chang, Y.F. and Carman, G.M. (2006). Casein kinase II phosphorylation of the yeast phospholipid synthesis transcription factor Opi1p. J. Biol. Chem. 281, 4754–4761.10.1074/jbc.M513064200Suche in Google Scholar PubMed PubMed Central

Choma, C., Gratkowski, H., Lear, J.D., and DeGrado, W.F. (2000). Asparagine-mediated self-association of a model transmembrane helix. Nat. Struct. Biol. 7, 161–166.10.1038/72440Suche in Google Scholar PubMed

Contreras, F.X., Ernst, A.M., Haberkant, P., Björkholm, P., Lindahl, E., Gönen, B., Tischer, C., Elofsson, A., von Heijne, G., Thiele, C., et al. (2012). Molecular recognition of a single sphingolipid species by a protein’s transmembrane domain. Nature 481, 525–529.10.1038/nature10742Suche in Google Scholar PubMed

Coskun, Ü., Grzybek, M., Drechsel, D., and Simons, K. (2011). Regulation of human EGF receptor by lipids. Proc. Natl. Acad. Sci. USA 108, 9044–9048.10.1073/pnas.1105666108Suche in Google Scholar PubMed PubMed Central

Cybulski, L.E., Martín, M., Mansilla, M.C., Fernández, A., and de Mendoza, D. (2010). Membrane thickness cue for cold sensing in a bacterium. Curr. Biol. 20, 1539–1544.10.1016/j.cub.2010.06.074Suche in Google Scholar PubMed

Danne, L., Aktas, M., Gleichenhagen, J., Grund, N., Wagner, D., Schwalbe, H., Hoffknecht, B., Metzler-Nolte, N., and Narberhaus, F. (2015). Membrane-binding mechanism of a bacterial phospholipid. Mol. Microbiol. 95, 313–331.10.1111/mmi.12870Suche in Google Scholar PubMed

Dawson, J.P., Weinger, J.S., and Engelman, D.M. (2002). Motifs of serine and threonine can drive association of transmembrane helices. J. Mol. Biol. 316, 799–805.10.1006/jmbi.2001.5353Suche in Google Scholar PubMed

Ding, Z., Taneva, S.G., Huang, H.K.H., Campbell, S.A., Semenec, L., Chen, N., and Cornell, R.B. (2012). A 22-mer segment in the structurally pliable regulatory domain of metazoan CTP, phosphocholine cytidylyltransferase facilitates both silencing and activating functions. J. Biol. Chem. 287, 38980–38991.10.1074/jbc.M112.402081Suche in Google Scholar PubMed PubMed Central

Domański, J., Marrink, S.J., and Schäfer, L. V. (2012). Transmembrane helices can induce domain formation in crowded model membranes. Biochim. Biophys. Acta Biomembr. 1818, 984–994.10.1016/j.bbamem.2011.08.021Suche in Google Scholar PubMed

Eaton, J.M., Mullins, G.R., Brindley, D.N., and Harris, T.E. (2013). Phosphorylation of lipin 1 and charge on the phosphatidic acid head group control its phosphatidic acid phosphatase activity and membrane association. J. Biol. Chem. 288, 9933–9945.10.1074/jbc.M112.441493Suche in Google Scholar PubMed PubMed Central

Ejsing, C.S., Sampaio, J.L., Surendranath, V., Duchoslav, E., Ekroos, K., Klemm, R.W., Simons, K., and Shevchenko, A. (2009). Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc. Natl. Acad. Sci. USA 106, 2136–2141.10.1073/pnas.0811700106Suche in Google Scholar PubMed PubMed Central

Fairn, G.D., Schieber, N.L., Ariotti, N., Murphy, S., Kuerschner, L., Webb, R.I., Grinstein, S., and Parton, R.G. (2011). High-resolution mapping reveals topologically distinct cellular pools of phosphatidylserine. J. Cell Biol. 194, 257–275.10.1083/jcb.201012028Suche in Google Scholar PubMed PubMed Central

Fisher, L.E., Engelman, D.M., and Sturgis, J.N. (1999). Detergents modulate dimerization, but not helicity, of the glycophorin A transmembrane domain. J. Mol. Biol. 293, 639–651.10.1006/jmbi.1999.3126Suche in Google Scholar PubMed

Fonseca, S.G., Gromada, J., and Urano, F. (2011). Endoplasmic reticulum stress and pancreatic β-cell death. Trends Endocrinol. Metab. 22, 266–274.10.1016/j.tem.2011.02.008Suche in Google Scholar PubMed PubMed Central

Gautier, R., Douguet, D., Antonny, B., and Drin, G. (2008). HELIQUEST: A web server to screen sequences with specific α -helical properties. Bioinformatics 24, 2101–2102.10.1093/bioinformatics/btn392Suche in Google Scholar PubMed

Goldstein, J.L., DeBose-Boyd, R.A., and Brown, M.S. (2006). Protein sensors for membrane sterols. Cell 124, 35–46.10.1016/j.cell.2005.12.022Suche in Google Scholar PubMed

Gurezka, R., Laage, R., Brosig, B., and Langosch, D. (1999). A Heptad motif of leucine residues found in membrane proteins can drive self-assembly of artificial transmembrane segments. J. Biol. Chem. 274, 9265–9270.10.1074/jbc.274.14.9265Suche in Google Scholar PubMed

Hampton, R.Y. (2002). Proteolysis and sterol regulation. Annu. Rev. Cell Dev. Biol. 18, 345–378.10.1146/annurev.cellbio.18.032002.131219Suche in Google Scholar PubMed

Han, G.-S., Wu, W.-I., and Carman, G.M. (2006). The Saccharomyces cerevisiae Lipin homolog is a Mg2+-dependent phosphatidate phosphatase enzyme. J. Biol. Chem. 281, 9210–9218.10.1074/jbc.M600425200Suche in Google Scholar PubMed PubMed Central

Han, S., Lone, M.A., Schneiter, R., and Chang, A. (2010). Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control. Proc. Natl. Acad. Sci. USA 107, 5851–5856.10.1073/pnas.0911617107Suche in Google Scholar PubMed PubMed Central

Hannun, Y.A. and Obeid, L.M. (2008). Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 9, 139–150.10.1038/nrm2329Suche in Google Scholar PubMed

Harding, H.P., Zhang, Y., and Ron, D. (1999). Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397, 271–274.10.1038/16729Suche in Google Scholar PubMed

Henry, S.A., Kohlwein, S.D., and Carman, G.M. (2012). Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae. Genetics 190, 317–349.10.1534/genetics.111.130286Suche in Google Scholar PubMed PubMed Central

Herrmann, J.R., Fuchs, A., Panitz, J.C., Eckert, T., Unterreitmeier, S., Frishman, D., and Langosch, D. (2010). Ionic interactions promote transmembrane helix-helix association depending on sequence context. J. Mol. Biol. 396, 452–461.10.1016/j.jmb.2009.11.054Suche in Google Scholar PubMed

Hofbauer, H.F., Schopf, F.H., Schleifer, H., Knittelfelder, O.L., Pieber, B., Rechberger, G.N., Wolinski, H., Gaspar, M.L., Kappe, C.O., Stadlmann. J., et al. (2014). Regulation of gene expression through a transcriptional repressor that senses acyl-chain length in membrane phospholipids. Dev. Cell 29, 729–739.10.1016/j.devcel.2014.04.025Suche in Google Scholar PubMed PubMed Central

Hoppe, T., Matuschewski, K., Rape, M., Schlenker, S., Ulrich, H.D., and Jentsch, S. (2000). Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 102, 577–586.10.1016/S0092-8674(00)00080-5Suche in Google Scholar

Inda, M.E., Vandenbranden, M., Fernández, A., de Mendoza, D., Ruysschaert, J.-M., and Cybulski, L.E. (2014). A lipid-mediated conformational switch modulates the thermosensing activity of DesK. Proc. Natl. Acad. Sci. USA 111, 3579–3584.10.1073/pnas.1317147111Suche in Google Scholar PubMed PubMed Central

Johnson, R.M., Hecht, K., and Deber, C.M. (2007). Aromatic and cation-pi interactions enhance helix-helix association in a membrane environment. Biochemistry 46, 9208–9214.10.1021/bi7008773Suche in Google Scholar PubMed

Jonikas, M., Collins, S., Denic, V., Oh, E., Quan, E., Schmid, V., Weibezahn, J., Schwappach, B., Walter, P., Weissman, J.S., et al. (2009). Comprehensive characterization of genes required for protein folding in the ER. Science 323, 1693–1697.10.1126/science.1167983Suche in Google Scholar PubMed PubMed Central

Karanasios, E., Han, G.-S., Xu, Z., Carman, G.M., and Siniossoglou, S. (2010). A phosphorylation-regulated amphipathic helix controls the membrane translocation and function of the yeast phosphatidate phosphatase. Proc. Natl. Acad. Sci. USA 107, 17539–17544.10.1073/pnas.1007974107Suche in Google Scholar PubMed PubMed Central

Karanasios, E., Barbosa, A.D., Sembongi, H., Mari, M., Han, G.-S., Reggiori, F., Carman, G.M., and Siniossoglou, S. (2013). Regulation of lipid droplet and membrane biogenesis by the acidic tail of the phosphatidate phosphatase Pah1p. Mol. Biol. Cell 24, 1–22.10.1091/mbc.e13-01-0021Suche in Google Scholar PubMed PubMed Central

Kennedy, E.P. and Weiss, S.B. (1956). The function of cytidine coenzymes in the biosynthesis of phospholipides. J. Biol. Chem. 222, 193–214.10.1016/S0021-9258(19)50785-2Suche in Google Scholar

Klose, C., Surma, M.A., Gerl, M.J., Meyenhofer, F., Shevchenko, A., and Simons, K. (2012). Flexibility of a eukaryotic lipidome-insights from yeast lipidomics. PLoS One 7, e35063.10.1371/journal.pone.0035063Suche in Google Scholar PubMed PubMed Central

Kniazeva, M., Crawford, Q.T., Seiber, M., Wang, C.-Y., and Han, M. (2004). Monomethyl branched-chain fatty acids play an essential role in Caenorhabditis elegans development. PLoS Biol. 2, E257.10.1371/journal.pbio.0020257Suche in Google Scholar PubMed PubMed Central

Korennykh, A. and Walter, P. (2012). Structural basis of the unfolded protein response. Annu. Rev. Cell Dev. Biol. 28, 251–277.10.1146/annurev-cellbio-101011-155826Suche in Google Scholar PubMed

Krahmer, N., Guo, Y., Wilfling, F., Hilger, M., Lingrell, S., Heger, K., Newman, H.W., Schmidt-Supprian, M., Vance, D.E., Mann, M., et al. (2011). Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase. Cell Metab. 14, 504–515.10.1016/j.cmet.2011.07.013Suche in Google Scholar PubMed PubMed Central

Langosch, D., Brosig, B., Kolmar, H., and Fritz, H.J. (1996). Dimerisation of the glycophorin A transmembrane segment in membranes probed with the ToxR transcription activator. J. Mol. Biol. 263, 525–530.10.1006/jmbi.1996.0595Suche in Google Scholar PubMed

Larsen, J.B., Jensen, M.B., Bhatia, V.K., Pedersen, S.L., Bjørnholm, T., Iversen, L., Uline, M., Szleifer, I., Jensen, K.J., Hatzakis, N.S., et al. (2015). Membrane curvature enables N-ras lipid anchor sorting to liquid-ordered membrane phases. Nat. Chem. Biol. 11, 192–194.10.1038/nchembio.1733Suche in Google Scholar PubMed

Lee, A.G. (2011). Biological membranes: the importance of molecular detail. Trends Biochem. Sci. 36, 493–500.10.1016/j.tibs.2011.06.007Suche in Google Scholar PubMed

Lee, C.-H., Olson, P., and Evans, R.M. (2003). Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology 144, 2201–2207.10.1210/en.2003-0288Suche in Google Scholar PubMed

Lee, J., Taneva, S.G., Holland, B.W., Tieleman, D.P., and Cornell, R.B. (2014). Structural basis for autoinhibition of CTP:phosphocholine cytidylyltransferase (CCT), the regulatory enzyme in phosphatidylcholine synthesis, by its membrane-binding amphipathic helix. J. Biol. Chem. 289, 1742–1755.10.1074/jbc.M113.526970Suche in Google Scholar PubMed PubMed Central

Lemmon, M.A. (2008). Membrane recognition by phospholipid-binding domains. Nat. Rev. Mol. Cell Biol. 9, 99–111.10.1038/nrm2328Suche in Google Scholar PubMed

Lemmon, M.A., and Schlessinger, J. (2010). Cell signaling by receptor tyrosine kinases. Cell 141, 1117–1134.10.1016/j.cell.2010.06.011Suche in Google Scholar PubMed PubMed Central

Levental, I., Lingwood, D., Grzybek, M., Coskun, U., and Simons, K. (2010). Palmitoylation regulates raft affinity for the majority of integral raft proteins. Proc. Natl. Acad. Sci. USA 107, 22050–22054.10.1073/pnas.1016184107Suche in Google Scholar PubMed PubMed Central

Lingwood, D. and Simons, K. (2010). Lipid rafts as a membrane-organizing principle. Science 327, 46–50.10.1126/science.1174621Suche in Google Scholar PubMed

Lin, J.-L. and Wheeldon, I. (2014). Dual N- and C-terminal helices are required for endoplasmic reticulum and lipid droplet association of alcohol acetyltransferases in Saccharomyces cerevisiae. PLoS One 9, e104141.10.1371/journal.pone.0104141Suche in Google Scholar PubMed PubMed Central

Lin, J.H., Walter, P., and Yen, T.S.B. (2008). Endoplasmic reticulum stress in disease pathogenesis. Annu. Rev. Pathol. 3, 399–425.10.1146/annurev.pathmechdis.3.121806.151434Suche in Google Scholar PubMed PubMed Central

Lipson, K.L., Fonseca, S.G., Ishigaki, S., Nguyen, L.X., Foss, E., Bortell, R., Rossini, A.A., and Urano, F. (2006). Regulation of insulin biosynthesis in pancreatic b cells by an endoplasmic reticulum-resident protein kinase IRE1. Cell Metab. 4, 245–254.10.1016/j.cmet.2006.07.007Suche in Google Scholar PubMed

Loewen, C.J.R., Gaspar, M.L., Jesch, S.A., Delon, C., Ktistakis, N.T., Henry, S.A., and Levine, T.P. (2004). Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. Science 304, 1644–1647.10.1126/science.1096083Suche in Google Scholar PubMed

Lykidis, A., Jackson, P., and Jackowski, S. (2001). Lipid activation of CTP:phosphocholine cytidylyltransferase α: characterization and identification of a second activation domain. Biochemistry 40, 494–503.10.1021/bi002140rSuche in Google Scholar PubMed

MacKenzie, K.R. (1997). A transmembrane helix dimer: structure and implications. Science 276, 131–133.10.1126/science.276.5309.131Suche in Google Scholar PubMed

Marrink, S.J. and Tieleman, D.P. (2013). Perspective on the Martini model. Chem. Soc. Rev. 42, 6801–6822.10.1039/c3cs60093aSuche in Google Scholar PubMed

Mesmin, B., Bigay, J., Moser Von Filseck, J., Lacas-Gervais, S., Drin, G., and Antonny, B. (2013). A four-step cycle driven by PI4P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP. Cell 155, 830–843.10.1016/j.cell.2013.09.056Suche in Google Scholar PubMed

Natter, K. and Kohlwein, S.D. (2012). Yeast and cancer cells-common principles in lipid metabolism. Biochim. Biophys. Acta 1831, 314–326.10.1016/j.bbalip.2012.09.003Suche in Google Scholar PubMed PubMed Central

Nile, A.H., Bankaitis, V.A., and Grabon, A. (2010). Mammalian diseases of phosphatidylinositol transfer proteins and their homologs. Clin. Lipidol. 5, 867–897.10.2217/clp.10.67Suche in Google Scholar PubMed PubMed Central

Nilsson, I., Sääf, A., Whitley, P., Gafvelin, G., Waller, C., and von -Heijne, G. (1998). Proline-induced disruption of a transmembrane a-helix in its natural environment. J. Mol. Biol. 284, 1165–1175.10.1006/jmbi.1998.2217Suche in Google Scholar PubMed

Paladino, S., Sarnataro, D., Pillich, R., Tivodar, S., Nitsch, L., and Zurzolo, C. (2004). Protein oligomerization modulates raft partitioning and apical sorting of GPI-anchored proteins. J. Cell Biol. 167, 699–709.10.1083/jcb.200407094Suche in Google Scholar PubMed PubMed Central

Papandreou, I., Denko, N.C., Olson, M., van Melckebeke, H., Lust, S., Tam, A., Solow-Cordero, D.E., Bouley, D.M., Offner, F., Niwa, M., et al. (2011). Identification of an Ire1a endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood 117, 1311–1314.10.1182/blood-2010-08-303099Suche in Google Scholar PubMed PubMed Central

Pineau, L., Colas, J., Dupont, S., Beney, L., Fleurat-Lessard, P., Berjeaud, J.-M., Bergès, T., Ferreira, T. (2009). Lipid-induced ER stress, synergistic effects of sterols and saturated fatty acids. Traffic 10, 673–690.10.1111/j.1600-0854.2009.00903.xSuche in Google Scholar PubMed

Polo, S. and Di Fiore, P.P. (2006). Endocytosis conducts the cell signaling orchestra. Cell 124, 897–900.10.1016/j.cell.2006.02.025Suche in Google Scholar PubMed

Pranke, I.M., Morello, V., Bigay, J., Gibson, K., Verbavatz, J.-M., Antonny, B., and Jackson, C.L. (2011). α-Synuclein and ALPS motifs are membrane curvature sensors whose contrasting chemistry mediates selective vesicle binding. J. Cell Biol. 194, 89–103.10.1083/jcb.201011118Suche in Google Scholar PubMed PubMed Central

Promlek, T., Ishiwata-Kimata, Y., Shido, M., Sakuramoto, M., Kohno, K., and Kimata, Y. (2011). Membrane aberrancy and unfolded proteins activate the endoplasmic reticulum stress sensor Ire1 in different ways. Mol. Biol. Cell 22, 3520–3532.10.1091/mbc.e11-04-0295Suche in Google Scholar

Psachoulia, E., Fowler, P.W., Bond, P.J., and Sansom, M.S. (2008). Helix-helix interactions in membrane proteins: coarse-grained simulations of glycophorin a helix dimerization. Biochemistry 47, 10503–10512.10.1021/bi800678tSuche in Google Scholar PubMed

Rape, M., Hoppe, T., Gorr, I., Kalocay, M., Richly, H., and Jentsch, S. (2001). Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone. Cell 107, 667–677.10.1016/S0092-8674(01)00595-5Suche in Google Scholar

Reimold, A.M., Iwakoshi, N.N., Manis, J., Vallabhajosyula, P., Szomolanyi-Tsuda, E., Gravallese, E.M., Friend, D., Grusby, M.J., Alt, F., and Glimcher, L.H. (2001). Plasma cell differentiation requires the transcription factor XBP-1. Nature 412, 300–307.10.1038/35085509Suche in Google Scholar PubMed

Ridder, A., Skupjen, P., Unterreitmeier, S., and Langosch, D. (2005). Tryptophan supports interaction of transmembrane helices. J. Mol. Biol. 354, 894–902.10.1016/j.jmb.2005.09.084Suche in Google Scholar PubMed

Ruipérez, V., Darios, F., and Davletov, B. (2010). Alpha-synuclein, lipids and Parkinson’s disease. Prog. Lipid Res. 49, 420–428.10.1016/j.plipres.2010.05.004Suche in Google Scholar PubMed

Russ, W.P. and Engelman, D.M. (1999). TOXCAT: a measure of transmembrane helix association in a biological membrane. Proc. Natl. Acad. Sci. USA 96, 863–868.10.1073/pnas.96.3.863Suche in Google Scholar PubMed PubMed Central

Russ, W.P. and Engelman, D.M. (2000). The GxxxG motif: a framework for transmembrane helix-helix association. J. Mol. Biol. 296, 911–919.10.1006/jmbi.1999.3489Suche in Google Scholar PubMed

Sal-Man, N., Gerber, D., and Shai, Y. (2004). The composition rather than position of polar residues (QxxS) drives aspartate receptor transmembrane domain dimerization in vivo. Biochemistry 43, 2309–2313.10.1021/bi0356294Suche in Google Scholar PubMed

Sal-Man, N., Gerber, D., Bloch, I., and Shai, Y. (2007). Specificity in transmembrane helix-helix interactions mediated by aromatic residues. J. Biol. Chem. 282, 19753–19761.10.1074/jbc.M610368200Suche in Google Scholar PubMed

Sal-Man, N., Gerber, D., and Shai, Y. (2014). Proline localized to the interaction interface can mediate self-association of transmembrane domains. Biochim. Biophys. Acta. 1838, 2313–2318.10.1016/j.bbamem.2014.05.006Suche in Google Scholar PubMed

Santos-Rosa, H., Leung, J., Grimsey, N., Peak-Chew, S., and Siniossoglou, S. (2005). The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth. EMBO J. 24, 1931–1941.10.1038/sj.emboj.7600672Suche in Google Scholar PubMed PubMed Central

Scarpelli, F., Drescher, M., Rutters-Meijneke, T., Holt, A., Rijkers, D.T.S., Killian, J.A., and Huber, M. (2009). Aggregation of transmembrane peptides studied by spin-label EPR. J. Phys. Chem. B 113, 12257–12264.10.1021/jp901371hSuche in Google Scholar PubMed

Schneider, D. and Engelman, D.M. (2003). GALLEX, a measurement of heterologous association of transmembrane helices in a biological membrane. J. Biol. Chem. 278, 3105–3111.10.1074/jbc.M206287200Suche in Google Scholar PubMed

Schneiter, R., Brügger, B., Sandhoff, R., Zellnig, G., Leber, A., Lampl, M., Athenstaedt, K., Hrastnik, C., Eder, S., Daum, G., et al. (1999). Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane. J. Cell Biol. 146, 741–754.10.1083/jcb.146.4.741Suche in Google Scholar PubMed PubMed Central

Schröder, M. and Kaufman, R.J. (2005). The mammalian unfolded protein response. Annu. Rev. Biochem. 74, 739–789.10.1146/annurev.biochem.73.011303.074134Suche in Google Scholar PubMed

Schuldiner, M., Collins, S.R., Thompson, N.J., Denic, V., Bhamidipati, A., Punna, T., Ihmels, J., Andrews, B., Boone, C., Greenblatt, J.F., et al. (2005). Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123, 507–519.10.1016/j.cell.2005.08.031Suche in Google Scholar PubMed

Senes, A., Gerstein, M., and Engelman, D.M. (2000). Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with β-branched residues at neighboring positions. J. Mol. Biol. 296, 921–936.10.1006/jmbi.1999.3488Suche in Google Scholar PubMed

Senes, A., Ubarretxena-Belandia, I., and Engelman, D.M. (2001). The Cα---H...O hydrogen bond: a determinant of stability and specificity in transmembrane helix interactions. Proc. Natl. Acad. Sci. USA 98, 9056–9061.10.1073/pnas.161280798Suche in Google Scholar PubMed PubMed Central

Sharpe, H.J., Stevens, T.J., and Munro, S. (2010). A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell 142, 158–169.10.1016/j.cell.2010.05.037Suche in Google Scholar PubMed PubMed Central

Shin, J.J. and Loewen, C.J. (2011). Putting the pH into phosphatidic acid signaling. BMC Biol. 9, 85.10.1186/1741-7007-9-85Suche in Google Scholar PubMed PubMed Central

Stordeur, C., Puth, K., Sáenz, J.P., and Ernst, R. (2014). Crosstalk of lipid and protein homeostasis to maintain membrane function. Biol. Chem. 395, 313–326.10.1515/hsz-2013-0235Suche in Google Scholar PubMed

Surma, M.A., Klose, C., Peng, D., Shales, M., Mrejen, C., Stefanko, A., Braberg, H., Gordon, D.E., Vorkel, D., Ejsing, C.S., et al. (2013). Article A lipid E-MAP identifies Ubx2 as a critical regulator of lipid saturation and lipid bilayer stress. Mol. Cell 51, 519–530.10.1016/j.molcel.2013.06.014Suche in Google Scholar PubMed PubMed Central

Tabas, I. and Ron, D. (2011). Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat. Cell Biol. 13, 184–190.10.1038/ncb0311-184Suche in Google Scholar PubMed PubMed Central

Thibault, G., Shui, G., Kim, W., Mcalister, G.C., Ismail, N., Gygi, S.P., Wenk, M.R., and Ng, D.T. (2012). The membrane stress response buffers lethal effects of lipid disequilibrium by reprogramming the protein homeostasis network. Mol. Cell. 48, 16–27.10.1016/j.molcel.2012.08.016Suche in Google Scholar PubMed PubMed Central

Tiwari, R., Köffel, R., and Schneiter, R. (2007). An acetylation/deacetylation cycle controls the export of sterols and steroids from S. cerevisiae. EMBO J. 26, 5109–5119.10.1038/sj.emboj.7601924Suche in Google Scholar PubMed PubMed Central

Treutlein, H.R., Lemmon, M.A., Engelman, D.M., and Brünger, A.T. (1992). The glycophorin A transmembrane domain dimer: sequence-specific propensity for a right-handed supercoil of helices. Biochemistry 31, 12726–12732.10.1021/bi00166a003Suche in Google Scholar PubMed

Van den Brink-Van Der Laan, E., Killian, J.A., and deKruijff, B. (2004). Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochim. Biophys. Acta Biomembr. 1666, 275–288.10.1016/j.bbamem.2004.06.010Suche in Google Scholar PubMed

Van Meer, G., Voelker, D.R., and Feigenson, G.W. (2008). Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124.10.1038/nrm2330Suche in Google Scholar PubMed PubMed Central

Volmer, R., van der Ploeg, K., and Ron, D. (2013). Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. Proc. Natl. Acad. Sci. USA 110, 4628–4633.10.1073/pnas.1217611110Suche in Google Scholar PubMed PubMed Central

Walters R.F.S. and DeGrado, W.F. (2006). Helix-packing motifs in membrane proteins. Proc. Natl. Acad. Sci. USA 103, 13658–13663.10.1073/pnas.0605878103Suche in Google Scholar PubMed PubMed Central

Walter, P. and Ron, D. (2011). The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086.10.1126/science.1209038Suche in Google Scholar PubMed

Yadav, R.S. and Tiwari, N.K. (2014). Lipid integration in neurodegeneration: An overview of Alzheimer’s disease. Mol. Neurobiol. 50, 168–176.10.1007/s12035-014-8661-5Suche in Google Scholar PubMed

Yoshida, H., Haze, K., Yanagi, H., Yura, T., and Mori, K. (1998). Identification of the cis-Acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. J. Biol. Chem. 273, 33741–33749.10.1074/jbc.273.50.33741Suche in Google Scholar PubMed

Young, B.P., Shin, J.J.H., Orij, R., Chao, J.T., Li, S.C., Guan, X.L., Khong, A., Jan, E., Wenk, M.R., Prinz, W.A., et al. (2010). Phosphatidic acid is a pH biosensor that links membrane biogenesis to metabolism. Science 329, 1085–1088.10.1126/science.1191026Suche in Google Scholar PubMed

Received: 2015-2-18
Accepted: 2015-3-31
Published Online: 2015-4-3
Published in Print: 2015-9-1

©2015 by De Gruyter

Artikel in diesem Heft

  1. Frontmatter
  2. Meeting Report
  3. Membrane Transport and Communication in Frankfurt: Speakers’ Summary – Highlights
  4. HIGHLIGHT: MEMBRANE TRANSPORT AND COMMUNICATION
  5. Structure, function, evolution, and application of bacterial Pnu-type vitamin transporters
  6. Team work at its best – TAPL and its two domains
  7. The volume-regulated anion channel is formed by LRRC8 heteromers – molecular identification and roles in membrane transport and physiology
  8. Extending native mass spectrometry approaches to integral membrane proteins
  9. Functional diversity of the superfamily of K+ transporters to meet various requirements
  10. The structure of Na+-translocating of NADH:ubiquinone oxidoreductase of Vibrio cholerae: implications on coupling between electron transfer and Na+ transport
  11. Hybrid rotors in F1Fo ATP synthases: subunit composition, distribution, and physiological significance
  12. Homeostatic control of biological membranes by dedicated lipid and membrane packing sensors
  13. The transporter associated with antigen processing: a key player in adaptive immunity
  14. The pseudo-atomic structure of an RND-type tripartite multidrug efflux pump
  15. The assembly and disassembly of the AcrAB-TolC three-component multidrug efflux pump
  16. A universal mechanism for transport and regulation of CPA sodium proton exchangers
  17. Biosynthesis of membrane dependent proteins in insect cell lysates: identification of limiting parameters for folding and processing
  18. Fluorescence and excited state dynamics of the deprotonated Schiff base retinal in proteorhodopsin
  19. Regulatory role of charged clusters in the N-terminal domain of BetP from Corynebacterium glutamicum
  20. The contribution of methionine to the stability of the Escherichia coli MetNIQ ABC transporter-substrate binding protein complex
  21. The ABC exporter MsbA probed by solid state NMR – challenges and opportunities
  22. Functional properties of LptA and LptD in Anabaena sp. PCC 7120
Heruntergeladen am 6.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2015-0130/html
Button zum nach oben scrollen