Startseite Functional properties of LptA and LptD in Anabaena sp. PCC 7120
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Functional properties of LptA and LptD in Anabaena sp. PCC 7120

  • Yi-Ching Hsueh , Eva-M. Brouwer , Julian Marzi , Oliver Mirus und Enrico Schleiff EMAIL logo
Veröffentlicht/Copyright: 10. März 2015

Abstract

Lipopolysaccharides (LPS) are central components of the outer membrane and consist of Lipid A, the core polysaccharide, and the O-antigen. The synthesis of LPS is initiated at the cytosolic face of the cytoplasmic membrane. The subsequent transport to and across the outer membrane involves multiple lipopolysaccharide transport (Lpt) proteins. Among those proteins, the periplasmic-localized LptA and the outer membrane-embedded LptD participate in the last steps of transfer and insertion of LPS into the outer membrane. While the process is described for proteobacterial model systems, not much is known about the machinery in cyanobacteria. We demonstrate that anaLptD (alr1278) of Anabaena sp. PCC 7120 is important for cell wall function and its pore domain shows a Lipid A sensitive cation-selective gating behavior. The N-terminal domain of anaLptD recognizes anaLptA (alr4067), but not ecLptA. Furthermore, anaLptA specifically interacts with the Lipid A from Anabaena sp. PCC 7120 only, while anaLptD binds to Lipid A isolated from Escherichia coli as well. Based on the comparative analysis of proteins from E. coli and Anabaena sp. we discuss the properties of the cyanobacterial Lpt system.


Corresponding author: Enrico Schleiff, Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von- Laue-Str. 9, D-60438 Frankfurt/Main, Germany; Cluster of Excellence Frankfurt, Buchman Institute of Molecular Life Sciences, Goethe University, Max von Laue Str. 9, D-60438 Frankfurt/Main, Germany, e-mail:

Acknowledgments

Y.-C.H. is the recipient of an IMPRES studentship. This work was supported by the Deutsche Forschungsgemeinschaft (SCHL 585-7) to E.S.

References

Aono, R., Negishi, T., and Nakajima, H. (1994). Cloning of organic solvent tolerance gene ostA that determines n-hexane tolerance level in Escherichia coli. Appl. Environ. Microbiol. 60, 4624–4626.10.1128/aem.60.12.4624-4626.1994Suche in Google Scholar

Apicella, M.A., Griffiss, J.M., and Schneider, H. (1994). Isolation and characterization of lipopolysaccharides, lipooligosaccharides, and lipid A. Methods Enzymol. 235, 242–252.10.1016/0076-6879(94)35145-7Suche in Google Scholar

Bos, M.P., Tefsen, B., Geurtsen, J., and Tommassen, J. (2004). Identification of an outer membrane protein required for the transport of lipopolysaccharide to the bacterial cell surface. Proc. Natl. Acad. Sci. USA 101, 9417–9422.10.1073/pnas.0402340101Suche in Google Scholar PubMed PubMed Central

Bos, M.P., and Tommassen, J. (2011). The LptD chaperone LptE is not directly involved in lipopolysaccharide transport in Neisseria meningitidis. J. Biol. Chem. 286, 28688–28696.10.1074/jbc.M111.239673Suche in Google Scholar PubMed PubMed Central

Bowyer, A., Baardsnes, J., Ajamian, E., Zhang, L., and Cygler, M. (2011). Characterization of interactions between LPS transport proteins of the Lpt system. Biochem. Biophys. Res. Commun. 404, 1093–1098.10.1016/j.bbrc.2010.12.121Suche in Google Scholar PubMed

Braun, M., and Silhavy, T.J. (2002). Imp/OstA is required for cell envelope biogenesis in Escherichia coli. Mol. Microbiol. 45, 1289–1302.10.1046/j.1365-2958.2002.03091.xSuche in Google Scholar PubMed

Chen, J., Tao, G., and Wang, X. (2011). Construction of an Escherichia coli mutant producing monophosphoryl lipid A. Biotechnol. Lett. 33, 1013–1019.10.1007/s10529-011-0521-zSuche in Google Scholar PubMed

Chng, S.S., Ruiz, N., Chimalakonda, G., Silhavy, T.J., and Kahne, D. (2010). Characterization of the two-protein complex in Escherichia coli responsible for lipopolysaccharide assembly at the outer membrane. Proc. Natl. Acad. Sci. USA 107, 5363–5368.10.1073/pnas.0912872107Suche in Google Scholar PubMed PubMed Central

Chng, S.S., Xue, M., Garner, R.A., Kadokura, H., Boyd, D., Beckwith, J., and Kahne, D. (2012). Disulfide rearrangement triggered by translocon assembly controls lipopolysaccharide export. Science 337, 1665–1668.10.1126/science.1227215Suche in Google Scholar PubMed PubMed Central

Dong, H., Xiang, Q., Gu, Y., Wang, Z., Paterson, N.G., Stansfeld, P.J., He, C., Zhang, Y., Wang, W., and Dong, C. (2014). Structural basis for outer membrane lipopolysaccharide insertion. Nature 511, 52–56.10.1038/nature13464Suche in Google Scholar PubMed

Eddy, S.R. (2011). Accelerated Profile HMM Searches. PLoS Comput. Biol. 7, e1002195.10.1371/journal.pcbi.1002195Suche in Google Scholar

Engelhardt, H. (2007). Are S-layers exoskeletons? The basic function of surface protein layers revisited. J. Struct. Biol. 160, 115–124.10.1016/j.jsb.2007.08.003Suche in Google Scholar

Finn, R.D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Heger, A., Hetherington, K., Holm, L., Mistry, J., et al. (2014). Pfam: the protein families database. Nuc. Acids Res. 42, 222–230.10.1093/nar/gkt1223Suche in Google Scholar

Freinkman, E., Chng, S.S., and Kahne, D. (2011). The complex that inserts lipopolysaccharide into the bacterial outer membrane forms a two-protein plug-and-barrel. Proc. Natl. Acad. Sci. USA 108, 2486–2491.10.1073/pnas.1015617108Suche in Google Scholar

Freinkman, E., Okuda, S., Ruiz, N., and Kahne, D. (2012). Regulated assembly of the transenvelope protein complex required for lipopolysaccharide export. Biochem. 51, 4800–4806.10.1021/bi300592cSuche in Google Scholar

Grabowicz, M., Yeh, J., and Silhavy, T.J. (2013). Dominant negative lptE mutation that supports a role for LptE as a plug in the LptD barrel. J. Bacteriol. 195, 1327–1334.10.1128/JB.02142-12Suche in Google Scholar

Greenfield, N., and Fasman, G.D. (1969). Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8, 4108–4116.10.1021/bi00838a031Suche in Google Scholar

Haarmann, R., Ibrahim, M., Stevanovic, M., Bredemeier, R., and Schleiff, E. (2010). The properties of the outer membrane localized Lipid A transporter LptD. J. Phys. Condens. Matter 22, 454124.10.1088/0953-8984/22/45/454124Suche in Google Scholar

Hahn A, and Schleiff E. (2014). The cell envelope. In: The cell biology of cyanobacteria, Flores, E., and Herrero, A. (eds) (Norfolk: Caister Academic Press), pp. 29–88.Suche in Google Scholar

Hille, B. (2001). Ion Channels of Excitable Membranes. 3rd ed. (Sunderland, Massachusetts, USA Sinauer Associates, Inc).Suche in Google Scholar

Hinnah, S.C., Wagner, R., Sveshnikova, N., Harrer, R., and Soll, J. (2002). The chloroplast protein import channel Toc75: Pore properties and interaction with transit peptides. Biophys. J. 83, 899–911.10.1016/S0006-3495(02)75216-8Suche in Google Scholar

Hug, I., Couturier, M.R., Rooker, M.M., Taylor, D.E., Stein, M., and Feldman, M.F. (2010). Helicobacter pylori lipopolysaccharide is synthesized via a novel pathway with an evolutionary connection to protein N-glycosylation. PLoS Pathog. 6, e1000819.10.1371/journal.ppat.1000819Suche in Google Scholar PubMed PubMed Central

Jacob-Dubuisson, F., Villeret, V., Clantin, B., Delattre, A.S., and Saint, N. (2009). First structural insights into the TpsB/Omp85 superfamily. Biol. Chem. 390, 675–684.10.1515/BC.2009.099Suche in Google Scholar

Katoh, K., Standley, D.M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780.10.1093/molbev/mst010Suche in Google Scholar

Krieger, E., Vriend, G. (2014). YASARA View-molecular graphics for all devices – from smartphones to workstations. Bioinformatics 30, 2981–2982.10.1093/bioinformatics/btu426Suche in Google Scholar

Kyte, J., Doolittle, R.F. (1982). A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132.10.1016/0022-2836(82)90515-0Suche in Google Scholar

Li, W., Godzik, A. (2006). Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659.10.1093/bioinformatics/btl158Suche in Google Scholar PubMed

Merten, J.A., Schultz, K.M., and Klug, C.S. (2012). Concentration-dependent oligomerization and oligomeric arrangement of LptA. Protein Sci. 21, 211– 218.10.1002/pro.2004Suche in Google Scholar PubMed PubMed Central

Moslavac, S., Bredemeier, R., Mirus, O., Granvogl, B., Eichacker, L.A., and Schleiff, E. (2005). Proteomic analysis of the outer membrane of Anabaena sp. strain PCC 7120. J. Proteome Res. 4, 1330–1338.Suche in Google Scholar

Moslavac, S., Reisinger, V., Berg, M., Mirus, O., Vosyka, O., Plöscher, M., Flores, E., Eichacker, L.A., and Schleiff, E. (2007a). The proteome of the heterocyst cell wall in Anabaena sp. PCC 7120. Biol. Chem. 388, 823–829.10.1515/BC.2007.079Suche in Google Scholar PubMed

Moslavac, S., Nicolaisen, K., Mirus, O., Al Dehni, F., Pernil, R., Flores, E, Maldener, I., and Schleiff, E. (2007b). A TolC-like protein is required for heterocyst development in Anabaena sp. strain PCC 7120. J. Bacteriol. 189, 7887–7895.10.1128/JB.00750-07Suche in Google Scholar PubMed PubMed Central

Nicolaisen, K., Moslavac, S., Samborski, A., Valdebenito, M., Hantke, K., Maldener, I., Muro-Pastor, A.M., Flores, E., and Schleiff, E. (2008). Alr0397 is an outer membrane transporter for the siderophore schizokinen in Anabaena sp. strain PCC 7120. J. Bacteriol. 190, 7500–7507.Suche in Google Scholar

Nicolaisen, K., Mariscal, V., Bredemeier, R., Pernil, R., Moslavac, S., López-Igual, R., Maldener, I., Herrero, A., Schleiff, E., and Flores, E. (2009). The outer membrane of a heterocyst-forming cyanobacterium is a permeability barrier for uptake of metabolites that are exchanged between cells. Mol. Microbiol. 74, 58–70.10.1111/j.1365-2958.2009.06850.xSuche in Google Scholar PubMed

Okuda, S., Freinkman, E., and Kahne, D. (2012). Cytoplasmic ATP hydrolysis powers transport of lipopolysaccharide across the periplasm in E. coli. Science 338, 1214 –1217.10.1126/science.1228984Suche in Google Scholar PubMed PubMed Central

Oreb, M., Höfle, A., Koenig, P., Sommer, M.S., Sinning, I., Wang, F., Tews, I., Schnell, D.J., and Schleiff, E. (2011). Substrate binding disrupts dimerization and induces nucleotide exchange of the chloroplast GTPase Toc33. Biochem. J. 436, 313–319.10.1042/BJ20110246Suche in Google Scholar PubMed PubMed Central

Qiao, S., Luo, Q., Zhao, Y., Zhang, X.C., and Huang, Y. (2014). Structural basis for lipopolysaccharide insertion in the bacterial outer membrane. Nature 511, 108–111.10.1038/nature13484Suche in Google Scholar PubMed

Raetz, C.R., and Whitfield, C. (2002). Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71, 635–700.10.1146/annurev.biochem.71.110601.135414Suche in Google Scholar PubMed PubMed Central

Rippka, R., Dereules, J., Waterbury, J.B., Herdman, M., and Stanier, R.Y. (1979). Generic assignments, strain stories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1–61.Suche in Google Scholar

Ruiz, N., Kahne, D., and Silhavy, T.J. (2006). Advances in understanding bacterial outer-membrane biogenesis. Nat. Rev. Microbiol. 4, 57–66.10.1038/nrmicro1322Suche in Google Scholar PubMed

Ruiz, N., Kahne, D., and Silhavy, T.J. (2009). Transport of lipopolysaccharide across the cell envelope: the long road of discovery. Nat. Rev. Microbiol. 7, 677–683.10.1038/nrmicro2184Suche in Google Scholar PubMed PubMed Central

Sampson, B.A., Misra, R., and Benson, S.A. (1989). Identification and characterization of a new gene of Escherichia coli K-12 involved in outer membrane permeability. Genetics 122, 491–501.10.1093/genetics/122.3.491Suche in Google Scholar PubMed PubMed Central

Schleiff, E., Soll, J., Sveshnikova, N., Tien, R., Wright, S., Dabney-Smith, C., Subramanian, C., and Bruce, B.D. (2002). Structural and guanosine triphosphate/diphosphate requirements for transit peptide recognition by the cytosolic domain of the chloroplast outer envelope receptor, Toc34. Biochemistry 41, 1934–1946.10.1021/bi011361+Suche in Google Scholar PubMed

Sestito, S.E., Sperandeo, P., Santambrogio, C., Ciaramelli, C., Calabrese, V., Rovati, G.E., Zambelloni, L., Grandori, R., Polissi, A., and Peri, F. (2014). Functional characterization of E. coli LptC: interaction with LPS and a synthetic ligand. ChemBioChem 15, 734–742.10.1002/cbic.201300805Suche in Google Scholar PubMed

Sonnhammer, E.L., von Heijne, G., Krogh A. (1998). A hidden Markov model for predicting transmembrane helices in protein sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol. 6, 175–182.Suche in Google Scholar

Sperandeo, P., Cescutti, R., Villa, R., Di Benedetto, C., Candia, D., Dehò, G., and Polissi, A. (2007). Characterization of lptA and lptB, two essential genes implicated in lipopolysaccharide transport to the outer membrane of Escherichia coli. J. Bacteriol. 189, 244 –253.10.1128/JB.01126-06Suche in Google Scholar PubMed PubMed Central

Sperandeo, P., Lau, F.K., Carpentieri, A., de Castro, C., Molinaro, A., Dehò, G., Silhavy, T.J., and Polissi, A. (2008). Functional analysis of the protein machinery required for transport of lipopolysaccharide to the outer membrane of Escherichia coli. J. Bacteriol. 190, 4460–4469.10.1128/JB.00270-08Suche in Google Scholar PubMed PubMed Central

Sperandeo, P., Villa, R., Martorana, A.M., Samalikova, M., Grandori, R., Dehò, G., and Polissi, A. (2011). New insights into the Lpt machinery for lipopolysaccharide transport to the cell surface: LptA-LptC interaction and LptA stability as sensors of a properly assembled transenvelope complex. J. Bacteriol. 193,1042–1053.10.1128/JB.01037-10Suche in Google Scholar PubMed PubMed Central

Suits, M.D., Sperandeo, P., Dehò, G., Polissi, A., and Jia, Z. (2008). Novel structure of the conserved gram-negative lipopolysaccharide transport protein A and mutagenesis analysis. J. Mol. Biol. 380, 476–488.10.1016/j.jmb.2008.04.045Suche in Google Scholar PubMed

Tran, A.X., Trent, M.S., and Whitfield, C. (2008). The LptA protein of Escherichia coli is a periplasmic lipid A-binding protein involved in the lipopolysaccharide export pathway. J. Biol. Chem. 283, 20342–20349.10.1074/jbc.M802503200Suche in Google Scholar PubMed PubMed Central

Tran, A.X., Dong, C., and Whitfield, C. (2010). Structure and functional analysis of LptC, a conserved membrane protein involved in the lipopolysaccharide export pathway in Escherichia coli. J. Biol. Chem. 285, 33529 –33539.10.1074/jbc.M110.144709Suche in Google Scholar PubMed PubMed Central

Tripp, J., Hahn, A., Koenig, P., Flinner, N., Bublak, D., Brouwer, E.M., Ertel, F., Mirus, O., Sinning, I., Tews, I., and Schleiff, E. (2012). Structure and conservation of the periplasmic targeting factor Tic22 protein from plants and cyanobacteria. J. Biol. Chem. 287, 24164–24173.10.1074/jbc.M112.341644Suche in Google Scholar PubMed PubMed Central

Wu, T., McCandlish, A.C., Gronenberg, L.S., Chng, S.S., Silhavy, T.J., and Kahne, D. (2006). Identification of a protein complex that assembles lipopolysaccharide in the outer membrane of Escherichia coli. Proc. Natl. Acad. Sci. USA 103, 11754–11759.10.1073/pnas.0604744103Suche in Google Scholar PubMed PubMed Central

Received: 2014-12-28
Accepted: 2015-3-1
Published Online: 2015-3-10
Published in Print: 2015-9-1

©2015 by De Gruyter

Artikel in diesem Heft

  1. Frontmatter
  2. Meeting Report
  3. Membrane Transport and Communication in Frankfurt: Speakers’ Summary – Highlights
  4. HIGHLIGHT: MEMBRANE TRANSPORT AND COMMUNICATION
  5. Structure, function, evolution, and application of bacterial Pnu-type vitamin transporters
  6. Team work at its best – TAPL and its two domains
  7. The volume-regulated anion channel is formed by LRRC8 heteromers – molecular identification and roles in membrane transport and physiology
  8. Extending native mass spectrometry approaches to integral membrane proteins
  9. Functional diversity of the superfamily of K+ transporters to meet various requirements
  10. The structure of Na+-translocating of NADH:ubiquinone oxidoreductase of Vibrio cholerae: implications on coupling between electron transfer and Na+ transport
  11. Hybrid rotors in F1Fo ATP synthases: subunit composition, distribution, and physiological significance
  12. Homeostatic control of biological membranes by dedicated lipid and membrane packing sensors
  13. The transporter associated with antigen processing: a key player in adaptive immunity
  14. The pseudo-atomic structure of an RND-type tripartite multidrug efflux pump
  15. The assembly and disassembly of the AcrAB-TolC three-component multidrug efflux pump
  16. A universal mechanism for transport and regulation of CPA sodium proton exchangers
  17. Biosynthesis of membrane dependent proteins in insect cell lysates: identification of limiting parameters for folding and processing
  18. Fluorescence and excited state dynamics of the deprotonated Schiff base retinal in proteorhodopsin
  19. Regulatory role of charged clusters in the N-terminal domain of BetP from Corynebacterium glutamicum
  20. The contribution of methionine to the stability of the Escherichia coli MetNIQ ABC transporter-substrate binding protein complex
  21. The ABC exporter MsbA probed by solid state NMR – challenges and opportunities
  22. Functional properties of LptA and LptD in Anabaena sp. PCC 7120
Heruntergeladen am 6.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2014-0322/html
Button zum nach oben scrollen