Abstract
The transporter associated with antigen processing (TAPL, ABCB9) is a homodimeric ABC transporter, shuttling cytosolic polypeptides into the lumen of lysosomes energized by ATP hydrolysis. Here we give a short overview of the superfamily of ABC transporters and summarize the current state of knowledge on TAPL in detail. The architecture of TAPL and its substrate specificity are described and we discuss the function of an extra N-terminal transmembrane domain, called TMD0, in respect of subcellular targeting and interaction with proteins, contributing to long-term stability. As TAPL shows – besides a ubiquitous basal expression – an elevated expression in antigen presenting cells, we present models of TAPL function in adaptive immunity.
Acknowledgments
This work was supported by the German Research Foundation via SFB807 – Transport and Communication across Membranes (R.A.) and Fond der Chemischen Industrie (T.Z. and R.A.)
References
Ambudkar, S.V., Cardarelli, C.O., Pashinsky, I., and Stein, W.D. (1997). Relation between the turnover number for vinblastine transport and for vinblastine-stimulated ATP hydrolysis by human P-glycoprotein. J. Biol. Chem. 272, 21160–21166.10.1074/jbc.272.34.21160Suche in Google Scholar PubMed
Andrejewski, N., Punnonen, E.L., Guhde, G., Tanaka, Y., Lullmann-Rauch, R., Hartmann, D., von Figura, K., and Saftig, P. (1999). Normal lysosomal morphology and function in LAMP-1-deficient mice. J. Biol. Chem. 274, 12692–12701.10.1074/jbc.274.18.12692Suche in Google Scholar PubMed
Bandler, P.E., Westlake, C.J., Grant, C.E., Cole, S.P., and Deeley, R.G. (2008). Identification of regions required for apical membrane localization of human multidrug resistance protein 2. Mol. Pharmacol. 74, 9–19.10.1124/mol.108.045674Suche in Google Scholar PubMed
Biemans-Oldehinkel, E., Doeven, M.K., and Poolman, B. (2006). ABC transporter architecture and regulatory roles of accessory domains. FEBS Lett. 580, 1023–1035.10.1016/j.febslet.2005.11.079Suche in Google Scholar PubMed
Borst, P. and Elferink, R.O. (2002). Mammalian ABC transporters in health and disease. Annu. Rev. Biochem. 71, 537–592.10.1146/annurev.biochem.71.102301.093055Suche in Google Scholar PubMed
Chan, K.W., Zhang, H., and Logothetis, D.E. (2003). N-terminal transmembrane domain of the SUR controls trafficking and gating of Kir6 channel subunits. EMBO J. 22, 3833–3843.10.1093/emboj/cdg376Suche in Google Scholar PubMed PubMed Central
Chen, Z.S. and Tiwari, A.K. (2011). Multidrug resistance proteins (MRPs/ABCCs) in cancer chemotherapy and genetic diseases. FEBS J. 278, 3226–3245.10.1111/j.1742-4658.2011.08235.xSuche in Google Scholar PubMed PubMed Central
Chicz, R.M., Urban, R.G., Gorga, J.C., Vignali, D.A., Lane, W.S., and Strominger, J.L. (1993). Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. J. Exp. Med. 178, 27–47.10.1084/jem.178.1.27Suche in Google Scholar PubMed PubMed Central
Cuervo, A.M. and Dice, J.F. (1996). A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273, 501–503.10.1126/science.273.5274.501Suche in Google Scholar PubMed
Cui, J. and Davidson, A.L. (2011). ABC solute importers in bacteria. Essays Biochem. 50, 85–99.10.1042/bse0500085Suche in Google Scholar PubMed
Dani, A., Chaudhry, A., Mukherjee, P., Rajagopal, D., Bhatia, S., George, A., Bal, V., Rath, S., and Mayor, S. (2004). The pathway for MHCII-mediated presentation of endogenous proteins involves peptide transport to the endo-lysosomal compartment. J. Cell Sci. 117, 4219–4230.10.1242/jcs.01288Suche in Google Scholar
Davidson, A.L., Dassa, E., Orelle, C., and Chen, J. (2008). Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol. Mol. Biol. Rev. 72, 317–364.10.1128/MMBR.00031-07Suche in Google Scholar
Dawson, R.J. and Locher, K.P. (2006). Structure of a bacterial multidrug ABC transporter. Nature 443, 180–185.10.1038/nature05155Suche in Google Scholar
Dean, M. (2005). The genetics of ATP-binding cassette transporters. Methods Enzymol. 400, 409–429.10.1016/S0076-6879(05)00024-8Suche in Google Scholar
Dean, M. and Annilo, T. (2005). Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates. Annu. Rev. Genomics Hum. Genet. 6, 123–142.10.1146/annurev.genom.6.080604.162122Suche in Google Scholar
Demirel, Ö., Bangert, I., Tampé, R., and Abele, R. (2010). Tuning the cellular trafficking of the lysosomal peptide transporter TAPL by its N-terminal domain. Traffic 11, 383–393.10.1111/j.1600-0854.2009.01021.xSuche in Google Scholar
Demirel, Ö., Jan, I., Wolters, D., Blanz, J., Saftig, P., Tampé, R., and Abele, R. (2012). The lysosomal polypeptide transporter TAPL is stabilized by interaction with LAMP-1 and LAMP-2. J. Cell Sci. 125, 4230–4240.10.1242/jcs.087346Suche in Google Scholar
Demirel, Ö., Waibler, Z., Kalinke, U., Grünebach, F., Appel, S., Brossart, P., Hasilik, A., Tampé, R., and Abele, R. (2007). Identification of a lysosomal peptide transport system induced during dendritic cell development. J. Biol. Chem. 282, 37836–37843.10.1074/jbc.M708139200Suche in Google Scholar
Denzer, K., Kleijmeer, M.J., Heijnen, H.F., Stoorvogel, W., and Geuze, H.J. (2000). Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J. Cell Sci. 113, 3365–3374.10.1242/jcs.113.19.3365Suche in Google Scholar
Dongre, A.R., Kovats, S., deRoos, P., McCormack, A.L., Nakagawa, T., Paharkova-Vatchkova, V., Eng, J., Caldwell, H., Yates, J.R., and Rudensky, A.Y. (2001). In vivo MHC class II presentation of cytosolic proteins revealed by rapid automated tandem mass spectrometry and functional analyses. Eur. J. Immunol. 31, 1485–1494.10.1002/1521-4141(200105)31:5<1485::AID-IMMU1485>3.0.CO;2-ASuche in Google Scholar
Eggensperger, S., Fisette, O., Parcej, D., Schäfer, L.V., and Tampé, R. (2014). An annular lipid belt is essential for allosteric coupling and viral inhibition of the antigen translocation complex TAP (transporter associated with antigen processing). J. Biol. Chem. 289, 33098–33108.10.1074/jbc.M114.592832Suche in Google Scholar
Escola, J.M., Kleijmeer, M.J., Stoorvogel, W., Griffith, J.M., Yoshie, O., and Geuze, H.J. (1998). Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J. Biol. Chem. 273, 20121–20127.10.1074/jbc.273.32.20121Suche in Google Scholar
Eskelinen, E.L., Tanaka, Y., and Saftig, P. (2003). At the acidic edge: emerging functions for lysosomal membrane proteins. Trends Cell Biol. 13, 137–145.10.1016/S0962-8924(03)00005-9Suche in Google Scholar
Eytan, G.D., Regev, R., and Assaraf, Y.G. (1996). Functional reconstitution of P-glycoprotein reveals an apparent near stoichiometric drug transport to ATP hydrolysis. J. Biol. Chem. 271, 3172–3178.10.1074/jbc.271.6.3172Suche in Google Scholar PubMed
George, A.M. and Jones, P.M. (2012). Perspectives on the structure-function of ABC transporters: the Switch and Constant Contact models. Prog. Biophys. Mol. Biol. 109, 95–107.10.1016/j.pbiomolbio.2012.06.003Suche in Google Scholar PubMed
Gerber, S., Comellas-Bigler, M., Goetz, B.A., and Locher, K.P. (2008). Structural basis of trans-inhibition in a molybdate/tungstate ABC transporter. Science 321, 246–250.10.1126/science.1156213Suche in Google Scholar PubMed
Henne, W.M., Buchkovich, N.J., and Emr, S.D. (2011). The ESCRT pathway. Dev. Cell 21, 77–91.10.1016/j.devcel.2011.05.015Suche in Google Scholar PubMed
Jones, P.M. and George, A.M. (2004). The ABC transporter structure and mechanism: perspectives on recent research. Cell. Mol. Life Sci. 61, 682–699.10.1007/s00018-003-3336-9Suche in Google Scholar PubMed
Kamakura, A., Fujimoto, Y., Motohashi, Y., Ohashi, K., Ohashi-Kobayashi, A., and Maeda, M. (2008). Functional dissection of transmembrane domains of human TAP-like (ABCB9). Biochem. Biophys. Res. Commun. 377, 847–851.10.1016/j.bbrc.2008.10.078Suche in Google Scholar PubMed
Kang, J., Hwang, J.U., Lee, M., Kim, Y.Y., Assmann, S.M., Martinoia, E., and Lee, Y. (2010). PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc. Natl. Acad. Sci. USA 107, 2355–2360.10.1073/pnas.0909222107Suche in Google Scholar PubMed PubMed Central
Kawai, H., Tanji, T., Shiraishi, H., Yamada, M., Iijima, R., Inoue, T., Kezuka, Y., Ohashi, K., Yoshida, Y., Tohyama, K., et al. (2009). Normal formation of a subset of intestinal granules in Caenorhabditis elegans requires ATP-binding cassette transporters HAF-4 and HAF-9, which are highly homologous to human lysosomal peptide transporter TAP-like. Mol. Biol. Cell 20, 2979–2990.10.1091/mbc.e08-09-0912Suche in Google Scholar PubMed PubMed Central
Kobayashi, A., Kasano, M., Maeda, T., Hori, S., Motojima, K., Suzuki, M., Fujiwara, T., Takahashi, E., Yabe, T., Tanaka, K., et al. (2000). A half-type ABC transporter TAPL is highly conserved between rodent and man, and the human gene is not responsive to interferon-gamma in contrast to TAP1 and TAP2. J. Biochem. 128, 711–718.10.1093/oxfordjournals.jbchem.a022805Suche in Google Scholar PubMed
Kobayashi, A., Hori, S., Suita, N., and Maeda, M. (2003). Gene organization of human transporter associated with antigen processing-like (TAPL, ABCB9): analysis of alternative splicing variants and promoter activity. Biochem. Biophys. Res. Commun. 309, 815–822.10.1016/j.bbrc.2003.08.081Suche in Google Scholar PubMed
Koch, J., Guntrum, R., Heintke, S., Kyritsis, C., and Tampé, R. (2004). Functional dissection of the transmembrane domains of the transporter associated with antigen processing (TAP). J. Biol. Chem. 279, 10142–10147.10.1074/jbc.M312816200Suche in Google Scholar PubMed
Koopmann, J.O., Post, M., Neefjes, J.J., Hämmerling, G.J., and Momburg, F. (1996). Translocation of long peptides by transporters associated with antigen processing (TAP). Eur. J. Immunol. 26, 1720–1728.10.1002/eji.1830260809Suche in Google Scholar PubMed
Lee, M., Choi, Y., Burla, B., Kim, Y.Y., Jeon, B., Maeshima, M., Yoo, J.Y., Martinoia, E., and Lee, Y. (2008). The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2. Nat. Cell Biol. 10, 1217–1223.10.1038/ncb1782Suche in Google Scholar PubMed
Leveson-Gower, D.B., Michnick, S.W., and Ling, V. (2004). Detection of TAP family dimerizations by an in vivo assay in mammalian cells. Biochemistry 43, 14257–14264.10.1021/bi0491245Suche in Google Scholar PubMed
Li, L., He, S., Sun, J.M., and Davie, J.R. (2004). Gene regulation by Sp1 and Sp3. Biochem. Cell Biol. 82, 460–471.10.1139/o04-045Suche in Google Scholar PubMed
Locher, K.P. (2009). Review. Structure and mechanism of ATP-binding cassette transporters. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 364, 239–245.10.1098/rstb.2008.0125Suche in Google Scholar PubMed PubMed Central
Locher, K.P., Lee, A.T., and Rees, D.C. (2002). The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296, 1091–1098.10.1126/science.1071142Suche in Google Scholar PubMed
Merzougui, N., Kratzer, R., Saveanu, L., and van Endert, P. (2011). A proteasome-dependent, TAP-independent pathway for cross-presentation of phagocytosed antigen. EMBO Rep. 12, 1257–1264.10.1038/embor.2011.203Suche in Google Scholar PubMed PubMed Central
Mizushima, N. and Levine, B. (2010). Autophagy in mammalian development and differentiation. Nat. Cell Biol. 12, 823–830.10.1038/ncb0910-823Suche in Google Scholar PubMed PubMed Central
Neumann, L. and Tampé, R. (1999). Kinetic analysis of peptide binding to the TAP transport complex: evidence for structural rearrangements induced by substrate binding. J. Mol. Biol. 294, 1203–1213.10.1006/jmbi.1999.3329Suche in Google Scholar PubMed
Nishimura, M. and Naito, S. (2005). Tissue-specific mRNA expression profiles of human ATP-binding cassette and solute carrier transporter superfamilies. Drug Metab. Pharmacokinet. 20, 452–477.10.2133/dmpk.20.452Suche in Google Scholar PubMed
Nürenberg, E. and Tampé, R. (2013). Tying up loose ends: ribosome recycling in eukaryotes and archaea. Trends Biochem. Sci. 38, 64–74.10.1016/j.tibs.2012.11.003Suche in Google Scholar PubMed
Oldham, M.L., Khare, D., Quiocho, F.A., Davidson, A.L., and Chen, J. (2007). Crystal structure of a catalytic intermediate of the maltose transporter. Nature 450, 515–521.10.1038/nature06264Suche in Google Scholar PubMed
Parcej, D. and Tampé, R. (2010). ABC proteins in antigen translocation and viral inhibition. Nat. Chem. Biol. 6, 572–580.10.1038/nchembio.410Suche in Google Scholar PubMed
Patzlaff, J.S., van der Heide, T., and Poolman, B. (2003). The ATP/substrate stoichiometry of the ATP-binding cassette (ABC) transporter OpuA. J. Biol. Chem. 278, 29546–29551.10.1074/jbc.M304796200Suche in Google Scholar PubMed
Powis, S.J., Townsend, A.R., Deverson, E.V., Bastin, J., Butcher, G.W., and Howard, J.C. (1991). Restoration of antigen presentation to the mutant cell line RMA-S by an MHC-linked transporter. Nature 354, 528–531.10.1038/354528a0Suche in Google Scholar PubMed
Ramos, M.S., Abele, R., Nagy, R., Grotemeyer, M.S., Tampé, R., Rentsch, D., and Martinoia, E. (2011). Characterization of a transport activity for long-chain peptides in barley mesophyll vacuoles. J. Exp. Bot. 62, 2403–2410.10.1093/jxb/erq397Suche in Google Scholar PubMed
Rice, A.J., Park, A., and Pinkett, H.W. (2014). Diversity in ABC transporters: Type I, II and III importers. Crit. Rev. Biochem. Mol. Biol. 49, 426–437.10.3109/10409238.2014.953626Suche in Google Scholar
Rudensky, AYu, Preston-Hurlburt, P., Hong, S.C., Barlow, A., and Janeway, C.A. (1991). Sequence analysis of peptides bound to MHC class II molecules. Nature 353, 622–627.10.1038/353622a0Suche in Google Scholar
Schmitt, L. and Tampé, R. (2002). Structure and mechanism of ABC transporters. Curr. Opin. Struct. Biol. 12, 754–760.10.1016/S0959-440X(02)00399-8Suche in Google Scholar
Schuette, V. and Burgdorf, S. (2014). The ins-and-outs of endosomal antigens for cross-presentation. Curr. Opin. Immunol. 26, 63–68.10.1016/j.coi.2013.11.001Suche in Google Scholar PubMed
Sun, H. (2012). Membrane receptors and transporters involved in the function and transport of vitamin A and its derivatives. Biochim. Biophys. Acta 1821, 99–112.10.1016/j.bbalip.2011.06.010Suche in Google Scholar PubMed PubMed Central
Tanaka, Y., Guhde, G., Suter, A., Eskelinen, E.L., Hartmann, D., Lullmann-Rauch, R., Janssen, P.M., Blanz, J., von Figura, K., and Saftig, P. (2000). Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 406, 902–906.10.1038/35022595Suche in Google Scholar PubMed
Tanji, T., Nishikori, K., Shiraishi, H., Maeda, M., and Ohashi-Kobayashi, A. (2013). Co-operative function and mutual stabilization of the half ATP-binding cassette transporters HAF-4 and HAF-9 in Caenorhabditis elegans. Biochem. J. 452, 467–475.10.1042/BJ20130115Suche in Google Scholar PubMed
Tanno, H. and Komada, M. (2013). The ubiquitin code and its decoding machinery in the endocytic pathway. J. Biochem. 153, 497–504.10.1093/jb/mvt028Suche in Google Scholar PubMed
Tarling, E.J., de Aguiar Vallim, T.Q., and Edwards, P.A. (2013). Role of ABC transporters in lipid transport and human disease. Trends Endocrinol. Metab. 24, 342–350.10.1016/j.tem.2013.01.006Suche in Google Scholar PubMed PubMed Central
ter Beek, J., Guskov, A., and Slotboom, D.J. (2014). Structural diversity of ABC transporters. J. Gen. Physiol. 143, 419–435.10.1085/jgp.201411164Suche in Google Scholar PubMed PubMed Central
Thiele, F., Tao, S., Zhang, Y., Muschaweckh, A., Zollmann, T., Protzer, U., Abele, R., and Drexler, I. (2015). Modified vaccinia virus Ankara-infected dendritic cells present CD4+ T-cell epitopes by endogenous major histocompatibility complex class II presentation pathways. J. Virol. 89, 2698–2709.10.1128/JVI.03244-14Suche in Google Scholar
Uebel, S., Kraas, W., Kienle, S., Wiesmuller, K.H., Jung, G., and Tampé, R. (1997). Recognition principle of the TAP transporter disclosed by combinatorial peptide libraries. Proc. Natl. Acad. Sci. USA 94, 8976–8981.10.1073/pnas.94.17.8976Suche in Google Scholar
Uinuk-ool, T.S., Mayer, W.E., Sato, A., Takezaki, N., Benyon, L., Cooper, M.D., and Klein, J. (2003). Identification and characterization of a TAP-family gene in the lamprey. Immunogenetics 55, 38–48.10.1007/s00251-003-0548-ySuche in Google Scholar
van Endert, P.M., Tampé, R., Meyer, T.H., Tisch, R., Bach, J.-F., and McDevitt, H.O. (1994). A sequential model for peptide binding and transport by the transporters associated with antigen processing. Immunity 1, 491–500.10.1016/1074-7613(94)90091-4Suche in Google Scholar
Virgin, H.W. and Levine, B. (2009). Autophagy genes in immunity. Nat. Immunol. 10, 461–470.10.1038/ni.1726Suche in Google Scholar
Wolters, J.C., Abele, R., and Tampé, R. (2005). Selective and ATP-dependent translocation of peptides by the homodimeric ATP binding cassette transporter TAP-like (ABCB9). J. Biol. Chem. 280, 23631–23636.10.1074/jbc.M503231200Suche in Google Scholar
Yamaguchi, Y., Kasano, M., Terada, T., Sato, R., and Maeda, M. (1999). An ABC transporter homologous to TAP proteins. FEBS Lett. 457, 231–236.10.1016/S0014-5793(99)01042-XSuche in Google Scholar
Yamaguchi, Y., Iseoka, H., Kobayashi, A., and Maeda, M. (2004). The carboxyl terminal sequence of rat transporter associated with antigen processing (TAP)-like (ABCB9) is heterogeneous due to splicing of its mRNA. Biol. Pharm. Bull. 27, 100–104.10.1248/bpb.27.100Suche in Google Scholar PubMed
Zhang, P. (2013). Structure and mechanism of energy-coupling factor transporters. Trends Microbiol. 21, 652–659.10.1016/j.tim.2013.09.009Suche in Google Scholar PubMed
Zhang, F., Zhang, W., Liu, L., Fisher, C.L., Hui, D., Childs, S., Dorovini-Zis, K., and Ling, V. (2000). Characterization of ABCB9, an ATP binding cassette protein associated with lysosomes. J. Biol. Chem. 275, 23287–23294.10.1074/jbc.M001819200Suche in Google Scholar PubMed
Zhao, C., Tampé, R., and Abele, R. (2006). TAP and TAP-like – brothers in arms? Naunyn-Schmiedeberg’s Arch. Pharmacol. 372, 444–450.Suche in Google Scholar
Zhao, C., Haase, W., Tampé, R., and Abele, R. (2008). Peptide specificity and lipid activation of the lysosomal transport complex ABCB9 (TAPL). J. Biol. Chem. 283, 17083–17091.10.1074/jbc.M801794200Suche in Google Scholar PubMed
Zollmann, T., Moiset, G., Tumulka, F., Tampé, R., Poolman, B., and Abele, R. (2015). Single liposome analysis of peptide translocation by the ABC transporter TAPL. Proc. Natl. Acad. Sci. USA 112, 2046–2051.10.1073/pnas.1418100112Suche in Google Scholar PubMed PubMed Central
©2015 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Meeting Report
- Membrane Transport and Communication in Frankfurt: Speakers’ Summary – Highlights
- HIGHLIGHT: MEMBRANE TRANSPORT AND COMMUNICATION
- Structure, function, evolution, and application of bacterial Pnu-type vitamin transporters
- Team work at its best – TAPL and its two domains
- The volume-regulated anion channel is formed by LRRC8 heteromers – molecular identification and roles in membrane transport and physiology
- Extending native mass spectrometry approaches to integral membrane proteins
- Functional diversity of the superfamily of K+ transporters to meet various requirements
- The structure of Na+-translocating of NADH:ubiquinone oxidoreductase of Vibrio cholerae: implications on coupling between electron transfer and Na+ transport
- Hybrid rotors in F1Fo ATP synthases: subunit composition, distribution, and physiological significance
- Homeostatic control of biological membranes by dedicated lipid and membrane packing sensors
- The transporter associated with antigen processing: a key player in adaptive immunity
- The pseudo-atomic structure of an RND-type tripartite multidrug efflux pump
- The assembly and disassembly of the AcrAB-TolC three-component multidrug efflux pump
- A universal mechanism for transport and regulation of CPA sodium proton exchangers
- Biosynthesis of membrane dependent proteins in insect cell lysates: identification of limiting parameters for folding and processing
- Fluorescence and excited state dynamics of the deprotonated Schiff base retinal in proteorhodopsin
- Regulatory role of charged clusters in the N-terminal domain of BetP from Corynebacterium glutamicum
- The contribution of methionine to the stability of the Escherichia coli MetNIQ ABC transporter-substrate binding protein complex
- The ABC exporter MsbA probed by solid state NMR – challenges and opportunities
- Functional properties of LptA and LptD in Anabaena sp. PCC 7120
Artikel in diesem Heft
- Frontmatter
- Meeting Report
- Membrane Transport and Communication in Frankfurt: Speakers’ Summary – Highlights
- HIGHLIGHT: MEMBRANE TRANSPORT AND COMMUNICATION
- Structure, function, evolution, and application of bacterial Pnu-type vitamin transporters
- Team work at its best – TAPL and its two domains
- The volume-regulated anion channel is formed by LRRC8 heteromers – molecular identification and roles in membrane transport and physiology
- Extending native mass spectrometry approaches to integral membrane proteins
- Functional diversity of the superfamily of K+ transporters to meet various requirements
- The structure of Na+-translocating of NADH:ubiquinone oxidoreductase of Vibrio cholerae: implications on coupling between electron transfer and Na+ transport
- Hybrid rotors in F1Fo ATP synthases: subunit composition, distribution, and physiological significance
- Homeostatic control of biological membranes by dedicated lipid and membrane packing sensors
- The transporter associated with antigen processing: a key player in adaptive immunity
- The pseudo-atomic structure of an RND-type tripartite multidrug efflux pump
- The assembly and disassembly of the AcrAB-TolC three-component multidrug efflux pump
- A universal mechanism for transport and regulation of CPA sodium proton exchangers
- Biosynthesis of membrane dependent proteins in insect cell lysates: identification of limiting parameters for folding and processing
- Fluorescence and excited state dynamics of the deprotonated Schiff base retinal in proteorhodopsin
- Regulatory role of charged clusters in the N-terminal domain of BetP from Corynebacterium glutamicum
- The contribution of methionine to the stability of the Escherichia coli MetNIQ ABC transporter-substrate binding protein complex
- The ABC exporter MsbA probed by solid state NMR – challenges and opportunities
- Functional properties of LptA and LptD in Anabaena sp. PCC 7120