Startseite Overview of the roles of Sox2 in stem cell and development
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Overview of the roles of Sox2 in stem cell and development

  • Ruopeng Feng und Jinhua Wen EMAIL logo
Veröffentlicht/Copyright: 13. März 2015

Abstract

Sox2 is well known for its functions in embryonic stem (ES) cell pluripotency, maintenance, and self-renewal, and it is an essential factor in generating inducible pluripotent stem (iPS) cells. It also plays an important role in development and adult tissue homeostasis of different tissues, especially the central nervous system. Increasing evidence has shown that aging is a stemness-related process in which Sox2 is also implicated as a key player, especially in the neural system. These distinct roles that Sox2 plays involve delicate regulatory networks consisting of other master transcription factors, microRNAs and signaling pathways. Additionally, the expression level of Sox2 can also be modulated transcriptionally, translationally or post-translationally. Here we will mainly review the roles of Sox2 in stem cell related development, homeostasis maintenance, aging processes, and the underlying molecular mechanisms involved.

Keywords: aging; development; Sox2

Corresponding author: Jinhua Wen, Peking University Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian, Beijing 100191, China, e-mail:

Acknowledgments

Our research was supported by the 973 Program (2011CB966203) from the Ministry of Science and Technology of China; and grants from the National Natural Science Foundation of China (31171417 and 31301212); and a grant from Beijing Natural Science Foundation (7142083).

References

Agathocleous, M., Iordanova, I., Willardsen, M.I., Xue, X.Y., Vetter, M.L., Harris, W.A., and Moore, K.B. (2009). A directional Wnt/b-catenin-Sox2-proneural pathway regulates the transition from proliferation to differentiation in the Xenopus retina. Development 136, 3289–3299.10.1242/dev.040451Suche in Google Scholar

Alvarez-Buylla, A. and Lim, D.A. (2004). For the long run: maintaining germinal niches in the adult brain. Neuron 41, 683–686.10.1016/S0896-6273(04)00111-4Suche in Google Scholar

Annovazzi, L., Mellai, M., Caldera, V., Valente, G., and Schiffer, D. (2011). SOX2 expression and amplification in gliomas and glioma cell lines. Cancer Genom. Proteomics 8, 139–147.Suche in Google Scholar

Arnold, K., Sarkar, A., Yram, M.A., Polo, J.M., Bronson, R., Sengupta, S., Seandel, M., Geijsen, N., and Hochedlinger, K. (2011). Sox2+ adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell 9, 317–329.10.1016/j.stem.2011.09.001Suche in Google Scholar PubMed PubMed Central

Artegiani, B. and Calegari, F. (2012). Age-related cognitive decline: can neural stem cells help us? Aging 4, 176–186.10.18632/aging.100446Suche in Google Scholar PubMed PubMed Central

Avilion, A.A., Nicolis, S.K., Pevny, L.H., Perez, L., Vivian, N., and Lovell-Badge, R. (2003). Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17, 126–140.10.1101/gad.224503Suche in Google Scholar PubMed PubMed Central

Bailey, K.J., Maslov, A.Y., and Pruitt, S.C. (2004). Accumulation of mutations and somatic selection in aging neural stem/progenitor cells. Aging Cell 3, 391–397.10.1111/j.1474-9728.2004.00128.xSuche in Google Scholar PubMed

Baltus, G.A., Kowalski, M.P., Zhai, H., Tutter, A.V., Quinn, D., Wall, D., and Kadam, S. (2009). Acetylation of sox2 induces its nuclear export in embryonic stem cells. Stem Cells 27, 2175–2184.10.1002/stem.168Suche in Google Scholar PubMed

Bass, A.J., Watanabe, H., Mermel, C.H., Yu, S., Perner, S., Verhaak, R.G., Kim, S.Y., Wardwell, L., Tamayo, P., Gat-Viks, I., et al. (2009). SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat. Genet. 41, 1238–1242.10.1038/ng.465Suche in Google Scholar PubMed PubMed Central

Ben Abdallah, N.M., Slomianka, L., Vyssotski, A.L., and Lipp, H.P. (2010). Early age-related changes in adult hippocampal neurogenesis in C57 mice. Neurobiol. Aging 31, 151–161.10.1016/j.neurobiolaging.2008.03.002Suche in Google Scholar PubMed

Biernaskie, J., Paris, M., Morozova, O., Fagan, B.M., Marra, M., Pevny, L., and Miller, F.D. (2009). SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells. Cell Stem Cell 5, 610–623.10.1016/j.stem.2009.10.019Suche in Google Scholar PubMed PubMed Central

Bishop, N.A., Lu, T., and Yankner, B.A. (2010). Neural mechanisms of ageing and cognitive decline. Nature 464, 529–535.10.1038/nature08983Suche in Google Scholar PubMed PubMed Central

Brazel, C.Y., Limke, T.L., Osborne, J.K., Miura, T., Cai, J., Pevny, L., and Rao, M.S. (2005). Sox2 expression defines a heterogeneous population of neurosphere-forming cells in the adult murine brain. Aging Cell 4, 197–207.10.1111/j.1474-9726.2005.00158.xSuche in Google Scholar PubMed

Cavallaro, M., Mariani, J., Lancini, C., Latorre, E., Caccia, R., Gullo, F., Valotta, M., DeBiasi, S., Spinardi, L., Ronchi, A., et al. (2008). Impaired generation of mature neurons by neural stem cells from hypomorphic Sox2 mutants. Development 135, 541–557.10.1242/dev.010801Suche in Google Scholar PubMed

Chakravarthy, H., Boer, B., Desler, M., Mallanna, S.K., McKeithan, T.W., and Rizzino, A. (2008). Identification of DPPA4 and other genes as putative Sox2:Oct-3/4 target genes using a combination of in silico analysis and transcription-based assays. J. Cell Physiol. 216, 651–662.10.1002/jcp.21440Suche in Google Scholar PubMed

Chen, Y., Shi, L., Zhang, L., Li, R., Liang, J., Yu, W., Sun, L., Yang, X., Wang, Y., Zhang, Y., et al. (2008). The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer. J. Biol. Chem. 283, 17969–17978.10.1074/jbc.M802917200Suche in Google Scholar PubMed

Cimadamore, F., Amador-Arjona, A., Chen, C., Huang, C.T., and Terskikh, A.V. (2013). SOX2-LIN28/let-7 pathway regulates proliferation and neurogenesis in neural precursors. Proc. Natl. Acad. Sci. USA 110, E3017–E3026.10.1073/pnas.1220176110Suche in Google Scholar PubMed PubMed Central

Dabdoub, A., Puligilla, C., Jones, J.M., Fritzsch, B., Cheah, K.S., Pevny, L.H., and Kelley, M.W. (2008). Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea. Proc. Natl. Acad. Sci. USA 105, 18396–18401.10.1073/pnas.0808175105Suche in Google Scholar PubMed PubMed Central

Driskell, R.R., Giangreco, A., Jensen, K.B., Mulder, K.W., and Watt, F.M. (2009). Sox2-positive dermal papilla cells specify hair follicle type in mammalian epidermis. Development 136, 2815–2823.10.1242/dev.038620Suche in Google Scholar PubMed PubMed Central

Fabel, K. and Kempermann, G. (2008). Physical activity and the regulation of neurogenesis in the adult and aging brain. Neuromolecular Med. 10, 59–66.10.1007/s12017-008-8031-4Suche in Google Scholar PubMed

Fauquier, T., Rizzoti, K., Dattani, M., Lovell-Badge, R., and Robinson, I.C. (2008). SOX2-expressing progenitor cells generate all of the major cell types in the adult mouse pituitary gland. Proc. Natl. Acad. Sci. USA 105, 2907–2912.10.1073/pnas.0707886105Suche in Google Scholar PubMed PubMed Central

Favaro, R., Valotta, M., Ferri, A.L., Latorre, E., Mariani, J., Giachino, C., Lancini, C., Tosetti, V., Ottolenghi, S., Taylor, V., et al. (2009). Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nat. Neurosci. 12, 1248–1256.10.1038/nn.2397Suche in Google Scholar

Feng, R., Zhou, S., Liu, Y., Song, D., Luan, Z., Dai, X., Li, Y., Tang, N., Wen, J., and Li, L. (2013). Sox2 protects neural stem cells from apoptosis via up-regulating survivin expression. Biochem. J. 450, 459–468.10.1042/BJ20120924Suche in Google Scholar

Fernandes, K.J., McKenzie, I.A., Mill, P., Smith, K.M., Akhavan, M., Barnabe-Heider, F., Biernaskie, J., Junek, A., Kobayashi, N.R., Toma, J.G., et al. (2004). A dermal niche for multipotent adult skin-derived precursor cells. Nat. Cell Biol. 6, 1082–1093.10.1038/ncb1181Suche in Google Scholar

Ferri, A.L., Cavallaro, M., Braida, D., Di Cristofano, A., Canta, A., Vezzani, A., Ottolenghi, S., Pandolfi, P.P., Sala, M., DeBiasi, S., et al. (2004). Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development 131, 3805–3819.10.1242/dev.01204Suche in Google Scholar

Foshay, K.M. and Gallicano, G.I. (2008). Regulation of Sox2 by STAT3 initiates commitment to the neural precursor cell fate. Stem Cells Dev. 17, 269–278.10.1089/scd.2007.0098Suche in Google Scholar

Gage, F.H. (2000). Mammalian neural stem cells. Science 287, 1433–1438.10.1126/science.287.5457.1433Suche in Google Scholar

Gangemi, R.M., Griffero, F., Marubbi, D., Perera, M., Capra, M.C., Malatesta, P., Ravetti, G.L., Zona, G.L., Daga, A., and Corte, G. (2009). SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity. Stem Cells 27, 40–48.10.1634/stemcells.2008-0493Suche in Google Scholar

Graham, V., Khudyakov, J., Ellis, P., and Pevny, L. (2003). SOX2 functions to maintain neural progenitor identity. Neuron 39, 749–765.10.1016/S0896-6273(03)00497-5Suche in Google Scholar

Gubbay, J., Collignon, J., Koopman, P., Capel, B., Economou, A., Munsterberg, A., Vivian, N., Goodfellow, P., and Lovell-Badge, R. (1990). A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 346, 245–250.10.1038/346245a0Suche in Google Scholar PubMed

Hattiangady, B. and Shetty, A.K. (2008). Aging does not alter the number or phenotype of putative stem/progenitor cells in the neurogenic region of the hippocampus. Neurobiol. Aging 29, 129–147.10.1016/j.neurobiolaging.2006.09.015Suche in Google Scholar PubMed PubMed Central

Hoffmann, S.A., Hos, D., Kuspert, M., Lang, R.A., Lovell-Badge, R., Wegner, M., and Reiprich, S. (2014). Stem cell factor Sox2 and its close relative Sox3 have differentiation functions in oligodendrocytes. Development 141, 39–50.10.1242/dev.098418Suche in Google Scholar PubMed PubMed Central

Hu, Q., Zhang, L., Wen, J., Wang, S., Li, M., Feng, R., Yang, X., and Li, L. (2010). The EGF receptor-sox2-EGF receptor feedback loop positively regulates the self-renewal of neural precursor cells. Stem Cells 28, 279–286.10.1002/stem.246Suche in Google Scholar PubMed

Iida, H., Suzuki, M., Goitsuka, R., and Ueno, H. (2012). Hypoxia induces CD133 expression in human lung cancer cells by up-regulation of OCT3/4 and SOX2. Int. J. Oncol. 40, 71–79.Suche in Google Scholar

Jeong, C.H., Cho, Y.Y., Kim, M.O., Kim, S.H., Cho, E.J., Lee, S.Y., Jeon, Y.J., Lee, K.Y., Yao, K., Keum, Y.S., et al. (2010). Phosphorylation of Sox2 cooperates in reprogramming to pluripotent stem cells. Stem Cells 28, 2141–2150.10.1002/stem.540Suche in Google Scholar PubMed

Johnston, A.P., Naska, S., Jones, K., Jinno, H., Kaplan, D.R., and Miller, F.D. (2013). Sox2-mediated regulation of adult neural crest precursors and skin repair. Stem Cell Reports 1, 38–45.10.1016/j.stemcr.2013.04.004Suche in Google Scholar PubMed PubMed Central

Julian, L.M., Vandenbosch, R., Pakenham, C.A., Andrusiak, M.G., Nguyen, A.P., McClellan, K.A., Svoboda, D.S., Lagace, D.C., Park, D.S., Leone, G., et al. (2013). Opposing regulation of Sox2 by cell-cycle effectors E2f3a and E2f3b in neural stem cells. Cell Stem Cell 12, 440–452.10.1016/j.stem.2013.02.001Suche in Google Scholar PubMed

Juuri, E., Saito, K., Ahtiainen, L., Seidel, K., Tummers, M., Hochedlinger, K., Klein, O.D., Thesleff, I., and Michon, F. (2012). Sox2+ stem cells contribute to all epithelial lineages of the tooth via Sfrp5+ progenitors. Dev. Cell 23, 317–328.10.1016/j.devcel.2012.05.012Suche in Google Scholar PubMed PubMed Central

Kamachi, Y., Uchikawa, M., Tanouchi, A., Sekido, R., and Kondoh, H. (2001). Pax6 and SOX2 form a co-DNA-binding partner complex that regulates initiation of lens development. Genes Dev. 15, 1272–1286.10.1101/gad.887101Suche in Google Scholar PubMed PubMed Central

Kelberman, D., Rizzoti, K., Avilion, A., Bitner-Glindzicz, M., Cianfarani, S., Collins, J., Chong, W.K., Kirk, J.M., Achermann, J.C., Ross, R., et al. (2006). Mutations within Sox2/SOX2 are associated with abnormalities in the hypothalamo-pituitary-gonadal axis in mice and humans. J. Clin. Invest. 116, 2442–2455.10.1172/JCI28658Suche in Google Scholar PubMed PubMed Central

Kempermann, G., Kuhn, H.G., and Gage, F.H. (1998). Experience-induced neurogenesis in the senescent dentate gyrus. J. Neurosci. 18, 3206–3212.10.1523/JNEUROSCI.18-09-03206.1998Suche in Google Scholar

Kiernan, A.E., Pelling, A.L., Leung, K.K., Tang, A.S., Bell, D.M., Tease, C., Lovell-Badge, R., Steel, K.P., and Cheah, K.S. (2005). Sox2 is required for sensory organ development in the mammalian inner ear. Nature 434, 1031–1035.10.1038/nature03487Suche in Google Scholar PubMed

Kopp, J.L., Ormsbee, B.D., Desler, M., and Rizzino, A. (2008). Small increases in the level of Sox2 trigger the differentiation of mouse embryonic stem cells. Stem Cells 26, 903–911.10.1634/stemcells.2007-0951Suche in Google Scholar

Kuhn, H.G., Dickinson-Anson, H., and Gage, F.H. (1996). Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J. Neurosci. 16, 2027–2033.10.1523/JNEUROSCI.16-06-02027.1996Suche in Google Scholar

Le, N., Nagarajan, R., Wang, J.Y., Araki, T., Schmidt, R.E., and Milbrandt, J. (2005). Analysis of congenital hypomyelinating Egr2Lo/Lo nerves identifies Sox2 as an inhibitor of Schwann cell differentiation and myelination. Proc. Natl. Acad. Sci. USA 102, 2596–2601.10.1073/pnas.0407836102Suche in Google Scholar

Lee, K.E., Seo, J., Shin, J., Ji, E.H., Roh, J., Kim, J.Y., Sun, W., Muhr, J., Lee, S., and Kim, J. (2014). Positive feedback loop between Sox2 and Sox6 inhibits neuronal differentiation in the developing central nervous system. Proc. Natl. Acad. Sci. USA 111, 2794–2799.10.1073/pnas.1308758111Suche in Google Scholar

Li, K.Z. and Lindenberger, U. (2002). Relations between aging sensory/sensorimotor and cognitive functions. Neurosci. Biobehav. Rev. 26, 777–783.10.1016/S0149-7634(02)00073-8Suche in Google Scholar

Marques-Torrejon, M.A., Porlan, E., Banito, A., Gomez-Ibarlucea, E., Lopez-Contreras, A.J., Fernandez-Capetillo, O., Vidal, A., Gil, J., Torres, J., and Farinas, I. (2013). Cyclin-dependent kinase inhibitor p21 controls adult neural stem cell expansion by regulating Sox2 gene expression. Cell Stem Cell 12, 88–100.10.1016/j.stem.2012.12.001Suche in Google Scholar PubMed PubMed Central

Maslov, A.Y., Barone, T.A., Plunkett, R.J., and Pruitt, S.C. (2004). Neural stem cell detection, characterization, and age-related changes in the subventricular zone of mice. J. Neurosci. 24, 1726–1733.10.1523/JNEUROSCI.4608-03.2004Suche in Google Scholar PubMed PubMed Central

Masui, S., Nakatake, Y., Toyooka, Y., Shimosato, D., Yagi, R., Takahashi, K., Okochi, H., Okuda, A., Matoba, R., Sharov, A.A., et al. (2007). Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat. Cell Biol. 9, 625–635.10.1038/ncb1589Suche in Google Scholar PubMed

Matsushima, D., Heavner, W., and Pevny, L.H. (2011). Combinatorial regulation of optic cup progenitor cell fate by SOX2 and PAX6. Development 138, 443–454.10.1242/dev.055178Suche in Google Scholar PubMed PubMed Central

Ng, S.Y., Bogu, G.K., Soh, B.S., and Stanton, L.W. (2013). The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis. Mol. Cell 51, 349–359.10.1016/j.molcel.2013.07.017Suche in Google Scholar PubMed

Okubo, T., Pevny, L.H., and Hogan, B.L. (2006). Sox2 is required for development of taste bud sensory cells. Genes Dev. 20, 2654–2659.10.1101/gad.1457106Suche in Google Scholar

Pan, W., Jin, Y., Chen, J., Rottier, R.J., Steel, K.P., and Kiernan, A.E. (2013). Ectopic expression of activated notch or SOX2 reveals similar and unique roles in the development of the sensory cell progenitors in the mammalian inner ear. J. Neurosci. 33, 16146–16157.10.1523/JNEUROSCI.3150-12.2013Suche in Google Scholar

Parent, J.M. (2007). Adult neurogenesis in the intact and epileptic dentate gyrus. Prog. Brain. Res. 163, 529–540.10.1016/S0079-6123(07)63028-3Suche in Google Scholar

Pevny, L.H. and Lovell-Badge, R. (1997). Sox genes find their feet. Curr. Opin. Genet. Dev. 7, 338–344.10.1016/S0959-437X(97)80147-5Suche in Google Scholar

Phi, J.H., Park, S.H., Kim, S.K., Paek, S.H., Kim, J.H., Lee, Y.J., Cho, B.K., Park, C.K., Lee, D.H., and Wang, K.C. (2008). Sox2 expression in brain tumors: a reflection of the neuroglial differentiation pathway. Am. J. Surg. Pathol. 32, 103–112.10.1097/PAS.0b013e31812f6ba6Suche in Google Scholar

Que, J., Okubo, T., Goldenring, J.R., Nam, K.T., Kurotani, R., Morrisey, E.E., Taranova, O., Pevny, L.H., and Hogan, B.L. (2007). Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm. Development 134, 2521–2531.10.1242/dev.003855Suche in Google Scholar

Sarkar, A. and Hochedlinger, K. (2013). The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell 12, 15–30.10.1016/j.stem.2012.12.007Suche in Google Scholar

Sarlak, G., Jenwitheesuk, A., Chetsawang, B., and Govitrapong, P. (2013). Effects of melatonin on nervous system aging: neurogenesis and neurodegeneration. J. Pharmacol. Sci. 123, 9–24.10.1254/jphs.13R01SRSuche in Google Scholar

Schepers, G.E., Teasdale, R.D., and Koopman, P. (2002). Twenty pairs of sox: extent, homology, and nomenclature of the mouse and human sox transcription factor gene families. Dev. Cell 3, 167–170.10.1016/S1534-5807(02)00223-XSuche in Google Scholar

Schneider, A., Bardakjian, T., Reis, L.M., Tyler, R.C., and Semina, E.V. (2009). Novel SOX2 mutations and genotype-phenotype correlation in anophthalmia and microphthalmia. Am. J. Med. Genet. A 149A, 2706–2715.10.1002/ajmg.a.33098Suche in Google Scholar PubMed PubMed Central

Sinclair, A.H., Berta, P., Palmer, M.S., Hawkins, J.R., Griffiths, B.L., Smith, M.J., Foster, J.W., Frischauf, A.M., Lovell-Badge, R., and Goodfellow, P.N. (1990). A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346, 240–244.10.1038/346240a0Suche in Google Scholar PubMed

Steiner, B., Zurborg, S., Horster, H., Fabel, K., and Kempermann, G. (2008). Differential 24 h responsiveness of Prox1-expressing precursor cells in adult hippocampal neurogenesis to physical activity, environmental enrichment, and kainic acid-induced seizures. Neuroscience 154, 521–529.10.1016/j.neuroscience.2008.04.023Suche in Google Scholar PubMed

Takahashi, K. and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676.10.1016/j.cell.2006.07.024Suche in Google Scholar PubMed

Tanaka, S., Kamachi, Y., Tanouchi, A., Hamada, H., Jing, N., and Kondoh, H. (2004). Interplay of SOX and POU factors in regulation of the Nestin gene in neural primordial cells. Mol. Cell Biol. 24, 8834–8846.10.1128/MCB.24.20.8834-8846.2004Suche in Google Scholar PubMed PubMed Central

Taranova, O.V., Magness, S.T., Fagan, B.M., Wu, Y., Surzenko, N., Hutton, S.R., and Pevny, L.H. (2006). SOX2 is a dose-dependent regulator of retinal neural progenitor competence. Genes Dev. 20, 1187–1202.10.1101/gad.1407906Suche in Google Scholar PubMed PubMed Central

Thomson, M., Liu, S.J., Zou, L.N., Smith, Z., Meissner, A., and Ramanathan, S. (2011). Pluripotency factors in embryonic stem cells regulate differentiation into germ layers. Cell 145, 875–889.10.1016/j.cell.2011.05.017Suche in Google Scholar PubMed PubMed Central

Tsuruzoe, S., Ishihara, K., Uchimura, Y., Watanabe, S., Sekita, Y., Aoto, T., Saitoh, H., Yuasa, Y., Niwa, H., Kawasuji, M., et al. (2006). Inhibition of DNA binding of Sox2 by the SUMO conjugation. Biochem. Biophys. Res. Commun. 351, 920–926.10.1016/j.bbrc.2006.10.130Suche in Google Scholar PubMed

Van Hoof, D., Munoz, J., Braam, S.R., Pinkse, M.W., Linding, R., Heck, A.J., Mummery, C.L., and Krijgsveld, J. (2009). Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 5, 214–226.10.1016/j.stem.2009.05.021Suche in Google Scholar PubMed

Vencken, S.F., Sethupathy, P., Blackshields, G., Spillane, C., Elbaruni, S., Sheils, O., Gallagher, M.F., and O’Leary, J.J. (2014). An integrated analysis of the SOX2 microRNA response program in human pluripotent and nullipotent stem cell lines. BMC Genomics 15, 711.10.1186/1471-2164-15-711Suche in Google Scholar PubMed PubMed Central

Weina, K. and Utikal, J. (2014). SOX2 and cancer: current research and its implications in the clinic. Clin. Transl. Med. 3, 19.10.1186/2001-1326-3-19Suche in Google Scholar PubMed PubMed Central

Wilbert, M.L., Huelga, S.C., Kapeli, K., Stark, T.J., Liang, T.Y., Chen, S.X., Yan, B.Y., Nathanson, J.L., Hutt, K.R., Lovci, M.T., et al. (2012). LIN28 binds messenger RNAs at GGAGA motifs and regulates splicing factor abundance. Mol. Cell 48, 195–206.10.1016/j.molcel.2012.08.004Suche in Google Scholar

Williamson, K.A., Hever, A.M., Rainger, J., Rogers, R.C., Magee, A., Fiedler, Z., Keng, W.T., Sharkey, F.H., McGill, N., Hill, C.J., et al. (2006). Mutations in SOX2 cause anophthalmia-esophageal-genital (AEG) syndrome. Hum. Mol. Genet. 15, 1413–1422.10.1093/hmg/ddl064Suche in Google Scholar

Wood, H.B. and Episkopou, V. (1999). Comparative expression of the mouse Sox1, Sox2 and Sox3 genes from pre-gastrulation to early somite stages. Mech. Dev. 86, 197–201.10.1016/S0925-4773(99)00116-1Suche in Google Scholar

Yabuta, Y., Kurimoto, K., Ohinata, Y., Seki, Y., and Saitou, M. (2006). Gene expression dynamics during germline specification in mice identified by quantitative single-cell gene expression profiling. Biol. Reprod. 75, 705–716.10.1095/biolreprod.106.053686Suche in Google Scholar PubMed

Ye, X., Wu, F., Wu, C., Wang, P., Jung, K., Gopal, K., Ma, Y., Li, L., and Lai, R. (2014). beta-Catenin, a Sox2 binding partner, regulates the DNA binding and transcriptional activity of Sox2 in breast cancer cells. Cell Sign. 26, 492–501.10.1016/j.cellsig.2013.11.023Suche in Google Scholar PubMed

Zhao, C., Deng, W., and Gage, F.H. (2008). Mechanisms and functional implications of adult neurogenesis. Cell 132, 645–660.10.1016/j.cell.2008.01.033Suche in Google Scholar PubMed

Zhao, S., Nichols, J., Smith, A.G., and Li, M. (2004). SoxB transcription factors specify neuroectodermal lineage choice in ES cells. Mol. Cell Neurosci. 27, 332–342.10.1016/j.mcn.2004.08.002Suche in Google Scholar PubMed

Received: 2014-12-19
Accepted: 2015-3-9
Published Online: 2015-3-13
Published in Print: 2015-8-1

©2015 by De Gruyter

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2014-0317/html
Button zum nach oben scrollen