Rapid transfer of overexpressed integral membrane protein from the host membrane into soluble lipid nanodiscs without previous purification
-
Nazhat Shirzad-Wasei
, Jenny van Oostrum
, Petra H.M. Bovee-Geurts , Lisanne J.A. Kusters , Giel J.C.G.M. Bosman und Willem J. DeGrip
Abstract
Structural and functional characterization of integral membrane proteins in a bilayer environment is strongly hampered by the requirement of detergents for solubilization and subsequent purification, as detergents commonly affect their structure and/or activity. Here, we describe a rapid procedure with minimal exposure to detergent to directly assemble an overexpressed integral membrane protein into soluble lipid nanodiscs prior to purification. This is exemplified with recombinant his-tagged rhodopsin, which is rapidly extracted from its host membrane and directly assembled into membrane scaffold protein (MSP) nanodiscs. We further demonstrate that, even when the MSP was his-tagged as well, partial purification of the rhodopsin-nanodiscs could be achieved exploiting immobilized-metal chromatography. Recoveries of rhodopsin up to 80% were achieved in the purified nanodisc fraction. Over 95% of contaminating membrane protein and his-tagged MSP could be removed from the rhodopsin-nanodiscs using a single Ni2+-affinity chromatography step. This level of purification is amply sufficient for functional studies. We provide evidence that the obtained rhodopsin-nanodisc preparations are fully functional both photochemically and in their ability to bind the cognate G-protein.
Acknowledgments
We thank Dr. Thomas Sakmar (The Rockefeller University, New York, NY, USA) for providing the plasmid for ZAP1-expression. We acknowledge Dr. Rosalie Crouch (Medical University of South Carolina, Charleston, SC, USA) for a generous gift of 11-cis retinal through financial support from NEI. We thank Dr. Vincent Lemieux (Radboud University, Nijmegen, The Netherlands) for support with the DLS assay. This research was supported by funds to WJDG from the Council for Chemical Sciences of the Netherlands Organization for Scientific Research (NWO-CW project 700.54.008).
References
Aris, L., Gilchrist, A., Rens-Domiano, S., Meyer, C., Schatz, P.J., Dratz, E.A., and Hamm, H.E. (2001). Structural requirements for the stabilization of metarhodopsin II by the C-terminus of the α subunit of transducin. J. Biol. Chem. 276, 2333–2339.10.1074/jbc.M002533200Suche in Google Scholar PubMed
Banerjee, S., Huber, T., and Sakmar, T.P. (2008). Rapid incorporation of functional rhodopsin into nanoscale apolipoprotein bound bilayer (NABB) particles. J. Mol. Biol. 377, 1067–1081.10.1016/j.jmb.2008.01.066Suche in Google Scholar PubMed
Bayburt, T.H., Grinkova, Y.V., and Sligar, S.G. (2002). Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett. 2, 853–856.10.1021/nl025623kSuche in Google Scholar
Bayburt, T.H., Grinkova, Y.V., and Sligar, S.G. (2006). Assembly of single bacteriorhodopsin trimers in bilayer nanodiscs. Arch. Biochem. Biophys. 450, 215–222.10.1016/j.abb.2006.03.013Suche in Google Scholar PubMed
Bayburt, T.H., Leitz, A.J., Xie, G., Oprian, D.D., and Sligar, S.G. (2007). Transducin activation by nanoscale lipid bilayers containing one and two rhodopsins. J. Biol. Chem. 282, 14875–14881.10.1074/jbc.M701433200Suche in Google Scholar PubMed
Bayburt, T.H., Vishnivetskiy, S.A., Mclean, M.A., Morizumi, T., Huang, C.-C., Tesmer, J.J.G., Ernst, O.P., Sligar, S.G., and Gurevich, V.V. (2011). Monomeric rhodopsin is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding. J. Biol. Chem. 286, 1420–1428.10.1074/jbc.M110.151043Suche in Google Scholar PubMed PubMed Central
Blanchette, C.D., Segelke, B.W., Fischer, N., Corzett, M.H., Kuhn, E.A., Cappuccio, J.A., Benner, W.H., Coleman, M.A., Chromy, B.A., Bench, G., et al. (2009). Characterization and purification of polydisperse reconstituted lipoproteins and nanolipoprotein particles. Int. J. Mol. Sci. 10, 2958–2971.10.3390/ijms10072958Suche in Google Scholar PubMed PubMed Central
Boldog, T., Grimme, S., Li, M., Sligar, S.G., and Hazelbauer, G.L. (2006). Nanodiscs separate chemoreceptor oligomeric states and reveal their signaling properties. Proc. Natl. Acad. Sci. USA 103, 11509–11514.10.1073/pnas.0604988103Suche in Google Scholar PubMed PubMed Central
Bosman, G.J.C.G.M., VanOostrum, J., Breikers, G., Bovee-Geurts, P.H.M., Klaassen, C.H.W., and DeGrip, W.J. (2003). Functional expression of his-tagged rhodopsin in Sf9 insect cells. Methods Mol. Biol. 228, 73–86.10.1385/1-59259-400-X:73Suche in Google Scholar
Chromy, B.A., Arroyo, E., Blanchette, C.D., Bench, G., Benner, H., Cappuccio, J.A., Coleman, M.A., Henderson, P.T., Hinz, A.K., Kuhn, E.A., et al. (2007). Different apolipoproteins impact nanolipoprotein particle formation. J. Am. Chem. Soc. 129, 14348–14354.10.1021/ja074753ySuche in Google Scholar PubMed
Civjan, N.R., Bayburt, T.H., Schuler, M.A., and Sligar, S.G. (2003). Direct solubilization of heterologously expressed membrane proteins by incorporation into nanoscale lipid bilayers. Biotechniques 35, 556–563.10.2144/03353rr02Suche in Google Scholar
D’Antona, A.M., Xie, G., Sligar, S.G., and Oprian, D.D. (2014). Assembly of an activated rhodopsin-transducin complex in nanoscale lipid bilayers. Biochemistry 53, 127–134.10.1021/bi4012995Suche in Google Scholar
Daemen, F.J.M., Borggreven, J.M.P.M., and Bonting, S.L. (1970). Molar absorbance of cattle rhodopsin. Nature 227, 1259–1260.10.1038/2271259a0Suche in Google Scholar
DeCaluwé, G.L.J. and DeGrip, W.J. (1996). Point mutations in bovine opsin can be classified in four groups with respect to their effect on the biosynthetic pathway of opsin. Biochem. J. 320, 807–815.10.1042/bj3200807Suche in Google Scholar
DeCaluwé, G.L.J., VanOostrum, J., Janssen, J.J.M., and DeGrip, W.J. (1993). In vitro synthesis of bovine rhodopsin using recombinant baculovirus. Methods Neurosci. 15, 307–321.10.1016/B978-0-12-185279-5.50028-5Suche in Google Scholar
DeGrip, W.J. (1982). Thermal stability of rhodopsin and opsin in some novel detergents. Methods Enzymol. 81, 256–265.10.1016/S0076-6879(82)81040-9Suche in Google Scholar
DeGrip, W.J. and Daemen, F.J.M. (1982). Sulfhydryl chemistry of rhodopsin. Methods Enzymol. 81, 223–236.10.1016/S0076-6879(82)81035-5Suche in Google Scholar
DeGrip, W.J., Daemen, F.J.M., and Bonting, S.L. (1980). Isolation and purification of bovine rhodopsin. Methods Enzymol. 67, 301–320.10.1016/S0076-6879(80)67038-4Suche in Google Scholar
DeGrip, W.J., VanOostrum, J., and Bovee-Geurts, P.H.M. (1998). Selective detergent-extraction from mixed detergent/lipid/protein micelles, using cyclodextrin inclusion compounds: a novel generic approach for the preparation of proteoliposomes. Biochem. J. 330, 667–674.10.1042/bj3300667Suche in Google Scholar PubMed PubMed Central
Denisov, I.G. and Sligar, S.G. (2011). Cytochromes P450 in nanodiscs. Biochem. Biophys. Acta 1814, 223–229.10.1016/j.bbapap.2010.05.017Suche in Google Scholar PubMed PubMed Central
Emeis, D., Kühn, H., Reichert, J., and Hofmann, K.P. (1982). Complex formation between metarhodopsin II and GTP-binding protein in bovine photoreceptor membranes leads to a shift of the photoproduct equilibrium. FEBS Lett. 143, 29–34.10.1016/0014-5793(82)80266-4Suche in Google Scholar
Gohon, Y. and Popot, J.L. (2003). Membrane protein-surfactant complexes. Curr. Opin. Colloid Interface Sci. 8, 15–22.10.1016/S1359-0294(03)00013-XSuche in Google Scholar
Groenendijk, G.W.T., DeGrip, W.J., and Daemen, F.J.M. (1980). Quantitative determination of retinals with complete retention of their geometric configuration. Biochem. Biophys. Acta 617, 430–438.10.1016/0005-2760(80)90009-0Suche in Google Scholar
Gulati, S., Jamshad, M., Knowles, T.J., Morrison, K.A., Downing, R., Cant, N., Collins, R., Koenderink, J.B., Ford, R.C., Overduin, M., et al. (2014). Detergent-free purification of ABC (ATP-binding-cassette) transporters. Biochem. J. 461, 269–278.10.1042/BJ20131477Suche in Google Scholar
Hofmann, K.P. (1986). Photoproducts of rhodopsin in the disc membrane. Photobiochem. Photobiophys. 13, 309–327.Suche in Google Scholar
Hubbard, R., Brown, P.K., and Bownds, M.D. (1971). Methodology of vitamin A and visual pigments. Methods Enzymol. 18, 615–653.10.1016/S0076-6879(71)18045-7Suche in Google Scholar
Inagaki, S., Ghirlando, R., and Grisshammer, R. (2013). Biophysical characterization of membrane proteins in nanodiscs. Methods 59, 287–300.10.1016/j.ymeth.2012.11.006Suche in Google Scholar
Jamshad, M., Lin, Y.P., Knowles, T.J., Parslow, R.A., Harris, C., Wheatley, M., Poyner, D.R., Bill, R.M., Thomas, O.R., Overduin, M., et al. (2011). Surfactant-free purification of membrane proteins with intact native membrane environment. Biochem. Soc. Trans. 39, 813–818.10.1042/BST0390813Suche in Google Scholar
Janssen, J.J.M., Mulder, W.R., DeCaluwé, G.L.J., Vlak, J.M., and DeGrip, W.J. (1991). In vitro expression of bovine opsin using recombinant baculovirus: the role of glutamic acid (134) in opsin biosynthesis and glycosylation. Biochem. Biophys. Acta 1089, 68–76.10.1016/0167-4781(91)90086-2Suche in Google Scholar
Janssen, J.J.M., Bovee-Geurts, P.H.M., Merkx, M., and DeGrip, W.J. (1995). Histidine tagging both allows convenient single-step purification of bovine rhodopsin and exerts ionic strength-dependent effects on its photochemistry. J. Biol. Chem. 270, 11222–11229.10.1074/jbc.270.19.11222Suche in Google Scholar
Klaassen, C.H.W. and DeGrip, W.J. (2000). Baculovirus expression system for expression and characterization of functional recombinant visual pigments. Methods Enzymol. 315, 12–29.10.1016/S0076-6879(00)15832-XSuche in Google Scholar
Klaassen, C.H.W., Bovee-Geurts, P.H.M., DeCaluwé, G.L.J., and DeGrip, W.J. (1999). Large-scale production and purification of functional recombinant bovine rhodopsin using the baculovirus expression system. Biochem. J. 342, 293–300.10.1042/bj3420293Suche in Google Scholar
Leitz, A.J., Bayburt, T.H., Barnakov, A.N., Springer, B.A., and Sligar, S.G. (2006). Functional reconstitution of β2-adrenergic receptors utilizing self-assembling Nanodisc technology. Biotechniques 40, 601–610.10.2144/000112169Suche in Google Scholar PubMed
Long, A.R., O’Brien, C.C., Malhotra, K., Schwall, C.T., Albert, A.D., Watts, A., and Alder, N.N. (2013). A detergent-free strategy for the reconstitution of active enzyme complexes from native biological membranes into nanoscale discs. BMC Biotechnol. 13, 41.10.1186/1472-6750-13-41Suche in Google Scholar PubMed PubMed Central
Marty, M.T., Wilcox, K.C., Klein, W.L., and Sligar, S.G. (2013). Nanodisc-solubilized membrane protein library reflects the membrane proteome. Anal. Bioanal. Chem. 405, 4009–4016.10.1007/s00216-013-6790-8Suche in Google Scholar PubMed PubMed Central
Matthews, R.G., Hubbard, R., Brown, P.K., and Wald, G. (1963). Tautomeric forms of metarhodopsin. J. Gen. Physiol. 47, 215–240.10.1085/jgp.47.2.215Suche in Google Scholar PubMed PubMed Central
Mors, K., Roos, C., Scholz, F., Wachtveitl, J., Dotsch, V., Bernhard, F., and Glaubitz, C. (2013). Modified lipid and protein dynamics in nanodiscs. Biochem. Biophys. Acta 1828, 1222–1229.10.1016/j.bbamem.2012.12.011Suche in Google Scholar PubMed
Navratilova, I., Sodroski, J., and Myszka, D.G. (2005). Solubilization, stabilization, and purification of chemokine receptors using biosensor technology. Anal. Biochem. 339, 271–281.10.1016/j.ab.2004.12.017Suche in Google Scholar PubMed
Orwick-Rydmark, M., Lovett, J.E., Graziadei, A., Lindholm, L., Hicks, M.R., and Watts, A. (2012). Detergent-free incorporation of a seven-transmembrane receptor protein into nanosized bilayer Lipodisq particles for functional and biophysical studies. Nano Lett. 12, 4687–4692.10.1021/nl3020395Suche in Google Scholar PubMed
Palczewski, K., Kumasaka, T., Hori, T., Behnke, C.A., Motoshima, H., Fox, B.A., Le Trong, I., Teller, D.C., Okada, T., Stenkamp, R.E., et al. (2000). Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745.10.1126/science.289.5480.739Suche in Google Scholar PubMed
Pandit, A., Shirzad-Wasei, N., Wlodarczyk, L.M., van Roon, H., Boekema, E.J., Dekker, J.P., and DeGrip, W.J. (2011). Assembly of the major light-harvesting complex II in lipid nanodiscs. Biophys. J. 101, 2507–2515.10.1016/j.bpj.2011.09.055Suche in Google Scholar PubMed PubMed Central
Park, S.H., Berkamp, S., Cook, G.A., Chan, M.K., Viadiu, H., and Opella, S.J. (2011). Nanodiscs versus macrodiscs for NMR of membrane proteins. Biochemistry 50, 8983–8985.10.1021/bi201289cSuche in Google Scholar
Popot, J.-L. (2010). Amphipols, nanodiscs, and fluorinated surfactants: three non-conventional approaches to studying membrane proteins in aqueous solutions. Annu. Rev. Biochem. 79, 737–775.10.1146/annurev.biochem.052208.114057Suche in Google Scholar
Prior, M.J., Larance, M., Lawrence, R.T., Soul, J., Humphrey, S., Burchfield, J., Kistler, C., Davey, J.R., La-Borde, P.J., Buckley, M., et al. (2011). Quantitative proteomic analysis of the adipocyte plasma membrane. J. Proteome. Res. 10, 4970–4982.10.1021/pr200446rSuche in Google Scholar
Ratnala, V.R.P., Swarts, H.G.P., VanOostrum, J., Leurs, R., de Groot, H.J.M., Bakker, R.A., and DeGrip, W.J. (2004). Large-scale overproduction, functional purification and ligand affinities of the His-tagged human histamine H1 receptor. Eur. J. Biochem. 271, 2636–2646.10.1111/j.1432-1033.2004.04192.xSuche in Google Scholar
Rigaud, J.-L., Lévy, D., Mosser, G., and Lambert, O. (1998). Detergent removal by non-polar polystyrene beads – applications to membrane protein reconstitution and two-dimensional crystallization. Eur. Biophys. J. Biophys. Lett. 27, 305–319.10.1007/s002490050138Suche in Google Scholar
Ritchie, T.K., Grinkova, Y.V., Bayburt, T.H., Denisov, I.G., Zolnerciks, J.K., Atkins, W.M., and Sligar, S.G. (2009). Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol. 464, 211–231.10.1016/S0076-6879(09)64011-8Suche in Google Scholar
Rosenbusch, J.P. (2001). Stability of membrane proteins: relevance for the selection of appropriate methods for high-resolution structure determinations. J. Struct. Biol. 136, 144–157.10.1006/jsbi.2001.4431Suche in Google Scholar PubMed
Sato, K., Morizumi, T., Yamashita, T., and Shichida, Y. (2010). Direct observation of the pH-dependent equilibrium between metarhodopsins I and II and the pH-independent interaction of metarhodopsin II with transducin C-terminal peptide. Biochemistry 49, 736–741.10.1021/bi9018412Suche in Google Scholar PubMed
Shirzad-Wasei, N., VanOostrum, J., Bovee-Geurts, P.H., Wasserman, M., Bosman, G.J., and DeGrip, W.J. (2013). Large scale expression and purification of mouse melanopsin-L in the baculovirus expression system. Protein Expr. Purif. 91, 134–146.10.1016/j.pep.2013.07.010Suche in Google Scholar PubMed
Silvius, J.R. (1992). Solubilization and functional reconstitution of biomembrane components. Annu. Rev. Biophys. Biomol. Struct. 21, 323–348.10.1146/annurev.bb.21.060192.001543Suche in Google Scholar PubMed
Sone, N., Yoshida, M., Hirata, H., and Kagawa, Y. (1977). Reconstitution of vesicles capable of energy transformation from phospholipids and adenosine triphosphatase of a thermophilic bacterium. J. Biochem. 81, 519–528.10.1093/oxfordjournals.jbchem.a131485Suche in Google Scholar
Swainsbury, D.J., Scheidelaar, S., VanGrondelle, R., Killian, J.A., and Jones, M.R. (2014). Bacterial reaction centers purified with styrene maleic acid copolymer retain native membrane functional properties and display enhanced stability. Angew. Chem. Int. Ed. Engl. 53, 11803–11807.10.1002/anie.201406412Suche in Google Scholar
Tsukamoto, H., Szundi, I., Lewis, J.W., Farrens, D.L., and Kliger, D.S. (2011). Rhodopsin in nanodiscs has native membrane-like photointermediates. Biochemistry 50, 5086–5091.10.1021/bi200391aSuche in Google Scholar
VanBreugel, P.J.G.M., Bovee-Geurts, P.H.M., Bonting, S.L., and Daemen, F.J.M. (1979). Biochemical aspects of the visual process XL. Spectral and chemical analysis of metarhodopsin III in photoreceptor membrane suspensions. Biochem. Biophys. Acta 557, 188–198.10.1016/0005-2736(79)90101-9Suche in Google Scholar
Vogel, R., Siebert, F., Zhang, X.Y., Fan, G.-B., and Sheves, M. (2004). Formation of meta III during the decay of activated rhodopsin proceeds via meta I and not via meta II. Biochemistry 43, 9457–9466.10.1021/bi049337uSuche in Google Scholar PubMed
Wald, G. (1968). The molecular basis of visual excitation. Nature 219, 800–807.10.1038/219800a0Suche in Google Scholar PubMed
Wallin, E. and VonHeijne, G. (1998). Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 7, 1029–1038.10.1002/pro.5560070420Suche in Google Scholar PubMed PubMed Central
Whorton, M.R., Bokoch, M.P., Rasmussen, S.G.F., Huang, B., Zare, R.N., Kobilka, B.K., and Sunahara, R.K. (2007). A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc. Natl. Acad. Sci. USA 104, 7682–7687.10.1073/pnas.0611448104Suche in Google Scholar PubMed PubMed Central
Whorton, M.R., Jastrzebska, B., Park, P.S.H., Fotiadis, D., Engel, A., Palczewski, K., and Sunahara, R.K. (2008). Efficient coupling of transducin to monomeric rhodopsin in a phospholipid bilayer. J. Biol. Chem. 283, 4387–4394.10.1074/jbc.M703346200Suche in Google Scholar PubMed PubMed Central
Wishart, D.S., Knox, C., Guo, A.C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z., and Woolsey, J. (2006). DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34, D668–D672.10.1093/nar/gkj067Suche in Google Scholar PubMed PubMed Central
Zhou, H.X. and Cross, T.A. (2013). Influences of membrane mimetic environments on membrane protein structures. Annu. Rev. Biophys. 42, 361–392.10.1146/annurev-biophys-083012-130326Suche in Google Scholar PubMed PubMed Central
Zoonens, M., Comer, J., Masscheleyn, S., Pebay-Peyroula, E., Chipot, C., Miroux, B., and Dehez, F. (2013). Dangerous liaisons between detergents and membrane proteins. The case of mitochondrial uncoupling protein 2. J. Am. Chem. Soc. 135, 15174–15182.10.1021/ja407424vSuche in Google Scholar PubMed
Supplemental Material
The online version of this article (DOI: 10.1515/hsz-2015-0100) offers supplementary material, available to authorized users.
©2015 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Reviews
- Ras activation revisited: role of GEF and GAP systems
- When core competence is not enough: functional interplay of the DEAD-box helicase core with ancillary domains and auxiliary factors in RNA binding and unwinding
- Cathepsin S: therapeutic, diagnostic, and prognostic potential
- Minireview
- Overview of the roles of Sox2 in stem cell and development
- Research Articles/Short Communications
- Genes and Nucleic Acids
- Transcriptional and translational mechanisms contribute to regulate the expression of Discs Large 1 protein during different biological processes
- Membranes, Lipids, Glycobiology
- Rapid transfer of overexpressed integral membrane protein from the host membrane into soluble lipid nanodiscs without previous purification
- Molecular Medicine
- Characterization of a new dual-targeting fully human antibody with potent antitumor activity against nasopharyngeal carcinoma
- Cell Biology and Signaling
- Lithium chloride improves the efficiency of induced pluripotent stem cell-derived neurospheres
- SIRT2 suppresses non-small cell lung cancer growth by targeting JMJD2A
- Troglitazone suppresses glutamine metabolism through a PPAR-independent mechanism
Artikel in diesem Heft
- Frontmatter
- Reviews
- Ras activation revisited: role of GEF and GAP systems
- When core competence is not enough: functional interplay of the DEAD-box helicase core with ancillary domains and auxiliary factors in RNA binding and unwinding
- Cathepsin S: therapeutic, diagnostic, and prognostic potential
- Minireview
- Overview of the roles of Sox2 in stem cell and development
- Research Articles/Short Communications
- Genes and Nucleic Acids
- Transcriptional and translational mechanisms contribute to regulate the expression of Discs Large 1 protein during different biological processes
- Membranes, Lipids, Glycobiology
- Rapid transfer of overexpressed integral membrane protein from the host membrane into soluble lipid nanodiscs without previous purification
- Molecular Medicine
- Characterization of a new dual-targeting fully human antibody with potent antitumor activity against nasopharyngeal carcinoma
- Cell Biology and Signaling
- Lithium chloride improves the efficiency of induced pluripotent stem cell-derived neurospheres
- SIRT2 suppresses non-small cell lung cancer growth by targeting JMJD2A
- Troglitazone suppresses glutamine metabolism through a PPAR-independent mechanism