Abstract
Sox2 is well known for its functions in embryonic stem (ES) cell pluripotency, maintenance, and self-renewal, and it is an essential factor in generating inducible pluripotent stem (iPS) cells. It also plays an important role in development and adult tissue homeostasis of different tissues, especially the central nervous system. Increasing evidence has shown that aging is a stemness-related process in which Sox2 is also implicated as a key player, especially in the neural system. These distinct roles that Sox2 plays involve delicate regulatory networks consisting of other master transcription factors, microRNAs and signaling pathways. Additionally, the expression level of Sox2 can also be modulated transcriptionally, translationally or post-translationally. Here we will mainly review the roles of Sox2 in stem cell related development, homeostasis maintenance, aging processes, and the underlying molecular mechanisms involved.
Acknowledgments
Our research was supported by the 973 Program (2011CB966203) from the Ministry of Science and Technology of China; and grants from the National Natural Science Foundation of China (31171417 and 31301212); and a grant from Beijing Natural Science Foundation (7142083).
References
Agathocleous, M., Iordanova, I., Willardsen, M.I., Xue, X.Y., Vetter, M.L., Harris, W.A., and Moore, K.B. (2009). A directional Wnt/b-catenin-Sox2-proneural pathway regulates the transition from proliferation to differentiation in the Xenopus retina. Development 136, 3289–3299.10.1242/dev.040451Search in Google Scholar
Alvarez-Buylla, A. and Lim, D.A. (2004). For the long run: maintaining germinal niches in the adult brain. Neuron 41, 683–686.10.1016/S0896-6273(04)00111-4Search in Google Scholar
Annovazzi, L., Mellai, M., Caldera, V., Valente, G., and Schiffer, D. (2011). SOX2 expression and amplification in gliomas and glioma cell lines. Cancer Genom. Proteomics 8, 139–147.Search in Google Scholar
Arnold, K., Sarkar, A., Yram, M.A., Polo, J.M., Bronson, R., Sengupta, S., Seandel, M., Geijsen, N., and Hochedlinger, K. (2011). Sox2+ adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell 9, 317–329.10.1016/j.stem.2011.09.001Search in Google Scholar PubMed PubMed Central
Artegiani, B. and Calegari, F. (2012). Age-related cognitive decline: can neural stem cells help us? Aging 4, 176–186.10.18632/aging.100446Search in Google Scholar PubMed PubMed Central
Avilion, A.A., Nicolis, S.K., Pevny, L.H., Perez, L., Vivian, N., and Lovell-Badge, R. (2003). Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17, 126–140.10.1101/gad.224503Search in Google Scholar PubMed PubMed Central
Bailey, K.J., Maslov, A.Y., and Pruitt, S.C. (2004). Accumulation of mutations and somatic selection in aging neural stem/progenitor cells. Aging Cell 3, 391–397.10.1111/j.1474-9728.2004.00128.xSearch in Google Scholar PubMed
Baltus, G.A., Kowalski, M.P., Zhai, H., Tutter, A.V., Quinn, D., Wall, D., and Kadam, S. (2009). Acetylation of sox2 induces its nuclear export in embryonic stem cells. Stem Cells 27, 2175–2184.10.1002/stem.168Search in Google Scholar PubMed
Bass, A.J., Watanabe, H., Mermel, C.H., Yu, S., Perner, S., Verhaak, R.G., Kim, S.Y., Wardwell, L., Tamayo, P., Gat-Viks, I., et al. (2009). SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat. Genet. 41, 1238–1242.10.1038/ng.465Search in Google Scholar PubMed PubMed Central
Ben Abdallah, N.M., Slomianka, L., Vyssotski, A.L., and Lipp, H.P. (2010). Early age-related changes in adult hippocampal neurogenesis in C57 mice. Neurobiol. Aging 31, 151–161.10.1016/j.neurobiolaging.2008.03.002Search in Google Scholar PubMed
Biernaskie, J., Paris, M., Morozova, O., Fagan, B.M., Marra, M., Pevny, L., and Miller, F.D. (2009). SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells. Cell Stem Cell 5, 610–623.10.1016/j.stem.2009.10.019Search in Google Scholar PubMed PubMed Central
Bishop, N.A., Lu, T., and Yankner, B.A. (2010). Neural mechanisms of ageing and cognitive decline. Nature 464, 529–535.10.1038/nature08983Search in Google Scholar PubMed PubMed Central
Brazel, C.Y., Limke, T.L., Osborne, J.K., Miura, T., Cai, J., Pevny, L., and Rao, M.S. (2005). Sox2 expression defines a heterogeneous population of neurosphere-forming cells in the adult murine brain. Aging Cell 4, 197–207.10.1111/j.1474-9726.2005.00158.xSearch in Google Scholar PubMed
Cavallaro, M., Mariani, J., Lancini, C., Latorre, E., Caccia, R., Gullo, F., Valotta, M., DeBiasi, S., Spinardi, L., Ronchi, A., et al. (2008). Impaired generation of mature neurons by neural stem cells from hypomorphic Sox2 mutants. Development 135, 541–557.10.1242/dev.010801Search in Google Scholar PubMed
Chakravarthy, H., Boer, B., Desler, M., Mallanna, S.K., McKeithan, T.W., and Rizzino, A. (2008). Identification of DPPA4 and other genes as putative Sox2:Oct-3/4 target genes using a combination of in silico analysis and transcription-based assays. J. Cell Physiol. 216, 651–662.10.1002/jcp.21440Search in Google Scholar PubMed
Chen, Y., Shi, L., Zhang, L., Li, R., Liang, J., Yu, W., Sun, L., Yang, X., Wang, Y., Zhang, Y., et al. (2008). The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer. J. Biol. Chem. 283, 17969–17978.10.1074/jbc.M802917200Search in Google Scholar PubMed
Cimadamore, F., Amador-Arjona, A., Chen, C., Huang, C.T., and Terskikh, A.V. (2013). SOX2-LIN28/let-7 pathway regulates proliferation and neurogenesis in neural precursors. Proc. Natl. Acad. Sci. USA 110, E3017–E3026.10.1073/pnas.1220176110Search in Google Scholar PubMed PubMed Central
Dabdoub, A., Puligilla, C., Jones, J.M., Fritzsch, B., Cheah, K.S., Pevny, L.H., and Kelley, M.W. (2008). Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea. Proc. Natl. Acad. Sci. USA 105, 18396–18401.10.1073/pnas.0808175105Search in Google Scholar PubMed PubMed Central
Driskell, R.R., Giangreco, A., Jensen, K.B., Mulder, K.W., and Watt, F.M. (2009). Sox2-positive dermal papilla cells specify hair follicle type in mammalian epidermis. Development 136, 2815–2823.10.1242/dev.038620Search in Google Scholar PubMed PubMed Central
Fabel, K. and Kempermann, G. (2008). Physical activity and the regulation of neurogenesis in the adult and aging brain. Neuromolecular Med. 10, 59–66.10.1007/s12017-008-8031-4Search in Google Scholar PubMed
Fauquier, T., Rizzoti, K., Dattani, M., Lovell-Badge, R., and Robinson, I.C. (2008). SOX2-expressing progenitor cells generate all of the major cell types in the adult mouse pituitary gland. Proc. Natl. Acad. Sci. USA 105, 2907–2912.10.1073/pnas.0707886105Search in Google Scholar PubMed PubMed Central
Favaro, R., Valotta, M., Ferri, A.L., Latorre, E., Mariani, J., Giachino, C., Lancini, C., Tosetti, V., Ottolenghi, S., Taylor, V., et al. (2009). Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nat. Neurosci. 12, 1248–1256.10.1038/nn.2397Search in Google Scholar
Feng, R., Zhou, S., Liu, Y., Song, D., Luan, Z., Dai, X., Li, Y., Tang, N., Wen, J., and Li, L. (2013). Sox2 protects neural stem cells from apoptosis via up-regulating survivin expression. Biochem. J. 450, 459–468.10.1042/BJ20120924Search in Google Scholar
Fernandes, K.J., McKenzie, I.A., Mill, P., Smith, K.M., Akhavan, M., Barnabe-Heider, F., Biernaskie, J., Junek, A., Kobayashi, N.R., Toma, J.G., et al. (2004). A dermal niche for multipotent adult skin-derived precursor cells. Nat. Cell Biol. 6, 1082–1093.10.1038/ncb1181Search in Google Scholar
Ferri, A.L., Cavallaro, M., Braida, D., Di Cristofano, A., Canta, A., Vezzani, A., Ottolenghi, S., Pandolfi, P.P., Sala, M., DeBiasi, S., et al. (2004). Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development 131, 3805–3819.10.1242/dev.01204Search in Google Scholar
Foshay, K.M. and Gallicano, G.I. (2008). Regulation of Sox2 by STAT3 initiates commitment to the neural precursor cell fate. Stem Cells Dev. 17, 269–278.10.1089/scd.2007.0098Search in Google Scholar
Gage, F.H. (2000). Mammalian neural stem cells. Science 287, 1433–1438.10.1126/science.287.5457.1433Search in Google Scholar
Gangemi, R.M., Griffero, F., Marubbi, D., Perera, M., Capra, M.C., Malatesta, P., Ravetti, G.L., Zona, G.L., Daga, A., and Corte, G. (2009). SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity. Stem Cells 27, 40–48.10.1634/stemcells.2008-0493Search in Google Scholar
Graham, V., Khudyakov, J., Ellis, P., and Pevny, L. (2003). SOX2 functions to maintain neural progenitor identity. Neuron 39, 749–765.10.1016/S0896-6273(03)00497-5Search in Google Scholar
Gubbay, J., Collignon, J., Koopman, P., Capel, B., Economou, A., Munsterberg, A., Vivian, N., Goodfellow, P., and Lovell-Badge, R. (1990). A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 346, 245–250.10.1038/346245a0Search in Google Scholar PubMed
Hattiangady, B. and Shetty, A.K. (2008). Aging does not alter the number or phenotype of putative stem/progenitor cells in the neurogenic region of the hippocampus. Neurobiol. Aging 29, 129–147.10.1016/j.neurobiolaging.2006.09.015Search in Google Scholar PubMed PubMed Central
Hoffmann, S.A., Hos, D., Kuspert, M., Lang, R.A., Lovell-Badge, R., Wegner, M., and Reiprich, S. (2014). Stem cell factor Sox2 and its close relative Sox3 have differentiation functions in oligodendrocytes. Development 141, 39–50.10.1242/dev.098418Search in Google Scholar PubMed PubMed Central
Hu, Q., Zhang, L., Wen, J., Wang, S., Li, M., Feng, R., Yang, X., and Li, L. (2010). The EGF receptor-sox2-EGF receptor feedback loop positively regulates the self-renewal of neural precursor cells. Stem Cells 28, 279–286.10.1002/stem.246Search in Google Scholar PubMed
Iida, H., Suzuki, M., Goitsuka, R., and Ueno, H. (2012). Hypoxia induces CD133 expression in human lung cancer cells by up-regulation of OCT3/4 and SOX2. Int. J. Oncol. 40, 71–79.Search in Google Scholar
Jeong, C.H., Cho, Y.Y., Kim, M.O., Kim, S.H., Cho, E.J., Lee, S.Y., Jeon, Y.J., Lee, K.Y., Yao, K., Keum, Y.S., et al. (2010). Phosphorylation of Sox2 cooperates in reprogramming to pluripotent stem cells. Stem Cells 28, 2141–2150.10.1002/stem.540Search in Google Scholar PubMed
Johnston, A.P., Naska, S., Jones, K., Jinno, H., Kaplan, D.R., and Miller, F.D. (2013). Sox2-mediated regulation of adult neural crest precursors and skin repair. Stem Cell Reports 1, 38–45.10.1016/j.stemcr.2013.04.004Search in Google Scholar PubMed PubMed Central
Julian, L.M., Vandenbosch, R., Pakenham, C.A., Andrusiak, M.G., Nguyen, A.P., McClellan, K.A., Svoboda, D.S., Lagace, D.C., Park, D.S., Leone, G., et al. (2013). Opposing regulation of Sox2 by cell-cycle effectors E2f3a and E2f3b in neural stem cells. Cell Stem Cell 12, 440–452.10.1016/j.stem.2013.02.001Search in Google Scholar PubMed
Juuri, E., Saito, K., Ahtiainen, L., Seidel, K., Tummers, M., Hochedlinger, K., Klein, O.D., Thesleff, I., and Michon, F. (2012). Sox2+ stem cells contribute to all epithelial lineages of the tooth via Sfrp5+ progenitors. Dev. Cell 23, 317–328.10.1016/j.devcel.2012.05.012Search in Google Scholar PubMed PubMed Central
Kamachi, Y., Uchikawa, M., Tanouchi, A., Sekido, R., and Kondoh, H. (2001). Pax6 and SOX2 form a co-DNA-binding partner complex that regulates initiation of lens development. Genes Dev. 15, 1272–1286.10.1101/gad.887101Search in Google Scholar PubMed PubMed Central
Kelberman, D., Rizzoti, K., Avilion, A., Bitner-Glindzicz, M., Cianfarani, S., Collins, J., Chong, W.K., Kirk, J.M., Achermann, J.C., Ross, R., et al. (2006). Mutations within Sox2/SOX2 are associated with abnormalities in the hypothalamo-pituitary-gonadal axis in mice and humans. J. Clin. Invest. 116, 2442–2455.10.1172/JCI28658Search in Google Scholar PubMed PubMed Central
Kempermann, G., Kuhn, H.G., and Gage, F.H. (1998). Experience-induced neurogenesis in the senescent dentate gyrus. J. Neurosci. 18, 3206–3212.10.1523/JNEUROSCI.18-09-03206.1998Search in Google Scholar
Kiernan, A.E., Pelling, A.L., Leung, K.K., Tang, A.S., Bell, D.M., Tease, C., Lovell-Badge, R., Steel, K.P., and Cheah, K.S. (2005). Sox2 is required for sensory organ development in the mammalian inner ear. Nature 434, 1031–1035.10.1038/nature03487Search in Google Scholar PubMed
Kopp, J.L., Ormsbee, B.D., Desler, M., and Rizzino, A. (2008). Small increases in the level of Sox2 trigger the differentiation of mouse embryonic stem cells. Stem Cells 26, 903–911.10.1634/stemcells.2007-0951Search in Google Scholar
Kuhn, H.G., Dickinson-Anson, H., and Gage, F.H. (1996). Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J. Neurosci. 16, 2027–2033.10.1523/JNEUROSCI.16-06-02027.1996Search in Google Scholar
Le, N., Nagarajan, R., Wang, J.Y., Araki, T., Schmidt, R.E., and Milbrandt, J. (2005). Analysis of congenital hypomyelinating Egr2Lo/Lo nerves identifies Sox2 as an inhibitor of Schwann cell differentiation and myelination. Proc. Natl. Acad. Sci. USA 102, 2596–2601.10.1073/pnas.0407836102Search in Google Scholar
Lee, K.E., Seo, J., Shin, J., Ji, E.H., Roh, J., Kim, J.Y., Sun, W., Muhr, J., Lee, S., and Kim, J. (2014). Positive feedback loop between Sox2 and Sox6 inhibits neuronal differentiation in the developing central nervous system. Proc. Natl. Acad. Sci. USA 111, 2794–2799.10.1073/pnas.1308758111Search in Google Scholar
Li, K.Z. and Lindenberger, U. (2002). Relations between aging sensory/sensorimotor and cognitive functions. Neurosci. Biobehav. Rev. 26, 777–783.10.1016/S0149-7634(02)00073-8Search in Google Scholar
Marques-Torrejon, M.A., Porlan, E., Banito, A., Gomez-Ibarlucea, E., Lopez-Contreras, A.J., Fernandez-Capetillo, O., Vidal, A., Gil, J., Torres, J., and Farinas, I. (2013). Cyclin-dependent kinase inhibitor p21 controls adult neural stem cell expansion by regulating Sox2 gene expression. Cell Stem Cell 12, 88–100.10.1016/j.stem.2012.12.001Search in Google Scholar PubMed PubMed Central
Maslov, A.Y., Barone, T.A., Plunkett, R.J., and Pruitt, S.C. (2004). Neural stem cell detection, characterization, and age-related changes in the subventricular zone of mice. J. Neurosci. 24, 1726–1733.10.1523/JNEUROSCI.4608-03.2004Search in Google Scholar PubMed PubMed Central
Masui, S., Nakatake, Y., Toyooka, Y., Shimosato, D., Yagi, R., Takahashi, K., Okochi, H., Okuda, A., Matoba, R., Sharov, A.A., et al. (2007). Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat. Cell Biol. 9, 625–635.10.1038/ncb1589Search in Google Scholar PubMed
Matsushima, D., Heavner, W., and Pevny, L.H. (2011). Combinatorial regulation of optic cup progenitor cell fate by SOX2 and PAX6. Development 138, 443–454.10.1242/dev.055178Search in Google Scholar PubMed PubMed Central
Ng, S.Y., Bogu, G.K., Soh, B.S., and Stanton, L.W. (2013). The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis. Mol. Cell 51, 349–359.10.1016/j.molcel.2013.07.017Search in Google Scholar PubMed
Okubo, T., Pevny, L.H., and Hogan, B.L. (2006). Sox2 is required for development of taste bud sensory cells. Genes Dev. 20, 2654–2659.10.1101/gad.1457106Search in Google Scholar
Pan, W., Jin, Y., Chen, J., Rottier, R.J., Steel, K.P., and Kiernan, A.E. (2013). Ectopic expression of activated notch or SOX2 reveals similar and unique roles in the development of the sensory cell progenitors in the mammalian inner ear. J. Neurosci. 33, 16146–16157.10.1523/JNEUROSCI.3150-12.2013Search in Google Scholar
Parent, J.M. (2007). Adult neurogenesis in the intact and epileptic dentate gyrus. Prog. Brain. Res. 163, 529–540.10.1016/S0079-6123(07)63028-3Search in Google Scholar
Pevny, L.H. and Lovell-Badge, R. (1997). Sox genes find their feet. Curr. Opin. Genet. Dev. 7, 338–344.10.1016/S0959-437X(97)80147-5Search in Google Scholar
Phi, J.H., Park, S.H., Kim, S.K., Paek, S.H., Kim, J.H., Lee, Y.J., Cho, B.K., Park, C.K., Lee, D.H., and Wang, K.C. (2008). Sox2 expression in brain tumors: a reflection of the neuroglial differentiation pathway. Am. J. Surg. Pathol. 32, 103–112.10.1097/PAS.0b013e31812f6ba6Search in Google Scholar
Que, J., Okubo, T., Goldenring, J.R., Nam, K.T., Kurotani, R., Morrisey, E.E., Taranova, O., Pevny, L.H., and Hogan, B.L. (2007). Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm. Development 134, 2521–2531.10.1242/dev.003855Search in Google Scholar
Sarkar, A. and Hochedlinger, K. (2013). The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell 12, 15–30.10.1016/j.stem.2012.12.007Search in Google Scholar
Sarlak, G., Jenwitheesuk, A., Chetsawang, B., and Govitrapong, P. (2013). Effects of melatonin on nervous system aging: neurogenesis and neurodegeneration. J. Pharmacol. Sci. 123, 9–24.10.1254/jphs.13R01SRSearch in Google Scholar
Schepers, G.E., Teasdale, R.D., and Koopman, P. (2002). Twenty pairs of sox: extent, homology, and nomenclature of the mouse and human sox transcription factor gene families. Dev. Cell 3, 167–170.10.1016/S1534-5807(02)00223-XSearch in Google Scholar
Schneider, A., Bardakjian, T., Reis, L.M., Tyler, R.C., and Semina, E.V. (2009). Novel SOX2 mutations and genotype-phenotype correlation in anophthalmia and microphthalmia. Am. J. Med. Genet. A 149A, 2706–2715.10.1002/ajmg.a.33098Search in Google Scholar PubMed PubMed Central
Sinclair, A.H., Berta, P., Palmer, M.S., Hawkins, J.R., Griffiths, B.L., Smith, M.J., Foster, J.W., Frischauf, A.M., Lovell-Badge, R., and Goodfellow, P.N. (1990). A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346, 240–244.10.1038/346240a0Search in Google Scholar PubMed
Steiner, B., Zurborg, S., Horster, H., Fabel, K., and Kempermann, G. (2008). Differential 24 h responsiveness of Prox1-expressing precursor cells in adult hippocampal neurogenesis to physical activity, environmental enrichment, and kainic acid-induced seizures. Neuroscience 154, 521–529.10.1016/j.neuroscience.2008.04.023Search in Google Scholar PubMed
Takahashi, K. and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676.10.1016/j.cell.2006.07.024Search in Google Scholar PubMed
Tanaka, S., Kamachi, Y., Tanouchi, A., Hamada, H., Jing, N., and Kondoh, H. (2004). Interplay of SOX and POU factors in regulation of the Nestin gene in neural primordial cells. Mol. Cell Biol. 24, 8834–8846.10.1128/MCB.24.20.8834-8846.2004Search in Google Scholar PubMed PubMed Central
Taranova, O.V., Magness, S.T., Fagan, B.M., Wu, Y., Surzenko, N., Hutton, S.R., and Pevny, L.H. (2006). SOX2 is a dose-dependent regulator of retinal neural progenitor competence. Genes Dev. 20, 1187–1202.10.1101/gad.1407906Search in Google Scholar PubMed PubMed Central
Thomson, M., Liu, S.J., Zou, L.N., Smith, Z., Meissner, A., and Ramanathan, S. (2011). Pluripotency factors in embryonic stem cells regulate differentiation into germ layers. Cell 145, 875–889.10.1016/j.cell.2011.05.017Search in Google Scholar PubMed PubMed Central
Tsuruzoe, S., Ishihara, K., Uchimura, Y., Watanabe, S., Sekita, Y., Aoto, T., Saitoh, H., Yuasa, Y., Niwa, H., Kawasuji, M., et al. (2006). Inhibition of DNA binding of Sox2 by the SUMO conjugation. Biochem. Biophys. Res. Commun. 351, 920–926.10.1016/j.bbrc.2006.10.130Search in Google Scholar PubMed
Van Hoof, D., Munoz, J., Braam, S.R., Pinkse, M.W., Linding, R., Heck, A.J., Mummery, C.L., and Krijgsveld, J. (2009). Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 5, 214–226.10.1016/j.stem.2009.05.021Search in Google Scholar PubMed
Vencken, S.F., Sethupathy, P., Blackshields, G., Spillane, C., Elbaruni, S., Sheils, O., Gallagher, M.F., and O’Leary, J.J. (2014). An integrated analysis of the SOX2 microRNA response program in human pluripotent and nullipotent stem cell lines. BMC Genomics 15, 711.10.1186/1471-2164-15-711Search in Google Scholar PubMed PubMed Central
Weina, K. and Utikal, J. (2014). SOX2 and cancer: current research and its implications in the clinic. Clin. Transl. Med. 3, 19.10.1186/2001-1326-3-19Search in Google Scholar PubMed PubMed Central
Wilbert, M.L., Huelga, S.C., Kapeli, K., Stark, T.J., Liang, T.Y., Chen, S.X., Yan, B.Y., Nathanson, J.L., Hutt, K.R., Lovci, M.T., et al. (2012). LIN28 binds messenger RNAs at GGAGA motifs and regulates splicing factor abundance. Mol. Cell 48, 195–206.10.1016/j.molcel.2012.08.004Search in Google Scholar
Williamson, K.A., Hever, A.M., Rainger, J., Rogers, R.C., Magee, A., Fiedler, Z., Keng, W.T., Sharkey, F.H., McGill, N., Hill, C.J., et al. (2006). Mutations in SOX2 cause anophthalmia-esophageal-genital (AEG) syndrome. Hum. Mol. Genet. 15, 1413–1422.10.1093/hmg/ddl064Search in Google Scholar
Wood, H.B. and Episkopou, V. (1999). Comparative expression of the mouse Sox1, Sox2 and Sox3 genes from pre-gastrulation to early somite stages. Mech. Dev. 86, 197–201.10.1016/S0925-4773(99)00116-1Search in Google Scholar
Yabuta, Y., Kurimoto, K., Ohinata, Y., Seki, Y., and Saitou, M. (2006). Gene expression dynamics during germline specification in mice identified by quantitative single-cell gene expression profiling. Biol. Reprod. 75, 705–716.10.1095/biolreprod.106.053686Search in Google Scholar PubMed
Ye, X., Wu, F., Wu, C., Wang, P., Jung, K., Gopal, K., Ma, Y., Li, L., and Lai, R. (2014). beta-Catenin, a Sox2 binding partner, regulates the DNA binding and transcriptional activity of Sox2 in breast cancer cells. Cell Sign. 26, 492–501.10.1016/j.cellsig.2013.11.023Search in Google Scholar PubMed
Zhao, C., Deng, W., and Gage, F.H. (2008). Mechanisms and functional implications of adult neurogenesis. Cell 132, 645–660.10.1016/j.cell.2008.01.033Search in Google Scholar PubMed
Zhao, S., Nichols, J., Smith, A.G., and Li, M. (2004). SoxB transcription factors specify neuroectodermal lineage choice in ES cells. Mol. Cell Neurosci. 27, 332–342.10.1016/j.mcn.2004.08.002Search in Google Scholar PubMed
©2015 by De Gruyter
Articles in the same Issue
- Frontmatter
- Reviews
- Ras activation revisited: role of GEF and GAP systems
- When core competence is not enough: functional interplay of the DEAD-box helicase core with ancillary domains and auxiliary factors in RNA binding and unwinding
- Cathepsin S: therapeutic, diagnostic, and prognostic potential
- Minireview
- Overview of the roles of Sox2 in stem cell and development
- Research Articles/Short Communications
- Genes and Nucleic Acids
- Transcriptional and translational mechanisms contribute to regulate the expression of Discs Large 1 protein during different biological processes
- Membranes, Lipids, Glycobiology
- Rapid transfer of overexpressed integral membrane protein from the host membrane into soluble lipid nanodiscs without previous purification
- Molecular Medicine
- Characterization of a new dual-targeting fully human antibody with potent antitumor activity against nasopharyngeal carcinoma
- Cell Biology and Signaling
- Lithium chloride improves the efficiency of induced pluripotent stem cell-derived neurospheres
- SIRT2 suppresses non-small cell lung cancer growth by targeting JMJD2A
- Troglitazone suppresses glutamine metabolism through a PPAR-independent mechanism
Articles in the same Issue
- Frontmatter
- Reviews
- Ras activation revisited: role of GEF and GAP systems
- When core competence is not enough: functional interplay of the DEAD-box helicase core with ancillary domains and auxiliary factors in RNA binding and unwinding
- Cathepsin S: therapeutic, diagnostic, and prognostic potential
- Minireview
- Overview of the roles of Sox2 in stem cell and development
- Research Articles/Short Communications
- Genes and Nucleic Acids
- Transcriptional and translational mechanisms contribute to regulate the expression of Discs Large 1 protein during different biological processes
- Membranes, Lipids, Glycobiology
- Rapid transfer of overexpressed integral membrane protein from the host membrane into soluble lipid nanodiscs without previous purification
- Molecular Medicine
- Characterization of a new dual-targeting fully human antibody with potent antitumor activity against nasopharyngeal carcinoma
- Cell Biology and Signaling
- Lithium chloride improves the efficiency of induced pluripotent stem cell-derived neurospheres
- SIRT2 suppresses non-small cell lung cancer growth by targeting JMJD2A
- Troglitazone suppresses glutamine metabolism through a PPAR-independent mechanism