Startseite On absolute Riesz summability factors of infinite series and their application to Fourier series
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On absolute Riesz summability factors of infinite series and their application to Fourier series

  • Hüseyin Bor EMAIL logo
Veröffentlicht/Copyright: 12. November 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, some known results on the absolute Riesz summability factors of infinite series and trigonometric Fourier series have been generalized for the |N¯,pn;θn|k summability method. Some new and known results are also obtained.

Acknowledgements

The author would like to thank the referee for valuable suggestions for the improvement of the paper.

References

[1] H. Bor, On two summability methods, Math. Proc. Cambridge Philos. Soc. 97 (1985), no. 1, 147–149. 10.1017/S030500410006268XSuche in Google Scholar

[2] H. Bor, On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc. 113 (1991), no. 4, 1009–1012. 10.1090/S0002-9939-1991-1068115-XSuche in Google Scholar

[3] H. Bor, On the absolute Riesz summability factors, Rocky Mountain J. Math. 24 (1994), no. 4, 1263–1271. 10.1216/rmjm/1181072337Suche in Google Scholar

[4] H. Bor, Some new results on absolute Riesz summability of infinite series and Fourier series, Positivity 20 (2016), no. 3, 599–605. 10.1007/s11117-015-0374-0Suche in Google Scholar

[5] E. Cesàro, Sur la multiplication des séries, Darboux Bull. (2) 14 (1890), 114–120. Suche in Google Scholar

[6] K. K. Chen, Functions of bounded variation and the Cesaro means of a Fourier series, Acad. Sinica Science Rec. 1 (1945), 283–289. Suche in Google Scholar

[7] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. Lond. Math. Soc. (3) 7 (1957), 113–141. 10.1112/plms/s3-7.1.113Suche in Google Scholar

[8] G. H. Hardy, Divergent Series, Clarendon Press, Oxford, 1949. Suche in Google Scholar

[9] E. Kogbetliantz, Sur les séries absolument par la méthode des moyannes arithmétiques, Bull. Sci. Math. (2) 49 (1925), 234–251. Suche in Google Scholar

[10] S. M. Mazhar, On C,1k summability factors of infinite series, Indian J. Math. 14 (1972), 45–48. 10.2307/2038337Suche in Google Scholar

[11] W. T. Sulaiman, On some summability factors of infinite series, Proc. Amer. Math. Soc. 115 (1992), no. 2, 313–317. 10.1090/S0002-9939-1992-1045602-2Suche in Google Scholar

Received: 2015-11-11
Revised: 2016-06-23
Accepted: 2016-07-20
Published Online: 2017-11-12
Published in Print: 2019-09-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2017-0047/html
Button zum nach oben scrollen