Startseite On the convergence of difference schemes for the generalized BBM–Burgers equation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the convergence of difference schemes for the generalized BBM–Burgers equation

  • Givi Berikelashvili EMAIL logo und Manana Mirianashvili
Veröffentlicht/Copyright: 14. November 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A three-level finite difference scheme is studied for the initial-boundary value problem of the generalized Benjamin–Bona–Mahony–Burgers equation. The obtained algebraic equations are linear with respect to the values of the desired function for each new level. The unique solvability and absolute stability of the difference scheme are shown. It is proved that the scheme is convergent with the rate of order k-1 when the exact solution belongs to the Sobolev space W2k(Q), 1<k3.

MSC 2010: 65M06; 65M12; 76B15

References

[1] K. Al-Khaled, S. Momani and A. Alawneh, Approximate wave solutions for generalized Benjamin–Bona–Mahony–Burgers equations, Appl. Math. Comput. 171 (2005), no. 1, 281–292. 10.1016/j.amc.2005.01.056Suche in Google Scholar

[2] M. Alquran and K. Al-Khaled, Sinc and solitary wave solutions to the generalized Benjamin–Bona–Mahony–Burgers equations, Phys. Scripta 83 (2011), no. 6, Article ID 065010. 10.1088/0031-8949/83/06/065010Suche in Google Scholar

[3] G. Berikelashvili, Construction and analysis of difference schemes for some elliptic problems, and consistent estimates of the rate of convergence, Mem. Differ. Equ. Math. Phys. 38 (2006), 1–131. Suche in Google Scholar

[4] G. Berikelashvili and M. Mirianashvili, On the convergence of difference schemes for generalized Benjamin–Bona–Mahony equation, Numer. Methods Partial Differential Equations 30 (2014), no. 1, 301–320. 10.1002/num.21810Suche in Google Scholar

[5] J. H. Bramble and S. R. Hilbert, Bounds for a class of linear functionals with applications to Hermite interpolation, Numer. Math. 16 (1971), no. 4, 362–369. 10.1007/BF02165007Suche in Google Scholar

[6] H.-T. Che, X.-T. Pan, L.-M. Zhang and Y.-J. Wang, Numerical analysis of a linear-implicit average scheme for generalized Benjamin–Bona–Mahony–Burgers equation, J. Appl. Math. 2012 (2012), Article ID 308410. 10.1155/2012/308410Suche in Google Scholar

[7] M. Dehghan, M. Abbaszadeh and A. Mohebbi, The numerical solution of nonlinear high dimensional generalized Benjamin–Bona–Mahony–Burgers equation via the meshless method of radial basis functions, Comput. Math. Appl. 68 (2014), no. 3, 212–237. 10.1016/j.camwa.2014.05.019Suche in Google Scholar

[8] T. Dupont and R. Scott, Polynomial approximation of functions in Sobolev spaces, Math. Comp. 34 (1980), no. 150, 441–463. 10.1090/S0025-5718-1980-0559195-7Suche in Google Scholar

[9] B. S. Jovanović, The Finite Difference Method for Boundary-Value Problems with Weak Solutions, Posebna Izdanja 16, Matematički Institut, Belgrade, 1993. Suche in Google Scholar

[10] R. D. Lazarov and V. L. Makarov, Convergence of the method of nets and the method of lines for multidimensional problems of mathematical physics in classes of generalized solutions (in Russian), Dokl. Akad. Nauk SSSR 259 (1981), no. 2, 282–286. Suche in Google Scholar

[11] R. D. Lazarov, V. L. Makarov and A. A. Samarskiĭ, Application of exact difference schemes for constructing and investigating difference schemes on generalized solutions (in Russian), Mat. Sb. (N.S.) 117(159) (1982), no. 4, 469–480. Suche in Google Scholar

[12] K. Rektorys, Variational Methods in Mathematics, Science and Engineering, Springer, Dordrecht, 2012. Suche in Google Scholar

[13] A. A. Samarskiĭ, The Theory of Difference Schemes, Monogr. Textb. Pure Appl. Math. 240., Marcel Dekker, New York, 2001. 10.1201/9780203908518Suche in Google Scholar

[14] A. A. Samarskiĭ, R. D. Lazarov and V. L. Makarov, Difference Shemes for Differential Equations with Generalized Solutions (in Russian), Visshaja Shkola, Moscow, 1987. Suche in Google Scholar

[15] H. Yin, H. Zhao and J. Kim, Convergence rates of solutions toward boundary layer solutions for generalized Benjamin–Bona–Mahony–Burgers equations in the half-space, J. Differential Equations 245 (2008), no. 11, 3144–3216. 10.1016/j.jde.2007.12.012Suche in Google Scholar

[16] H. Zhao and B. Xuan, Existence and convergence of solutions for the generalized BBM–Burgers equations with dissipative term, Nonlinear Anal. 28 (1997), no. 11, 1835–1849. 10.1016/S0362-546X(95)00237-PSuche in Google Scholar

[17] T. Zhao, X. Zhang, J. Huo, W. Su, Y. Liu and Y. Wu, Optimal error estimate of Chebyshev-Legendre spectral method for the generalised Benjamin–Bona–Mahony–Burgers equations, Abstr. Appl. Anal. 2012 (2012), Article ID 106343. 10.1155/2012/106343Suche in Google Scholar

Received: 2016-10-12
Revised: 2016-12-25
Accepted: 2016-12-30
Published Online: 2018-11-14
Published in Print: 2019-09-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2018-0075/html
Button zum nach oben scrollen