Startseite Some results for complex partial q-difference equations in ℂn
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Some results for complex partial q-difference equations in n

  • Yue Wang EMAIL logo
Veröffentlicht/Copyright: 12. August 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Using the Nevanlinna theory of the value distribution of meromorphic functions, the value distribution of complex partial q-difference polynomials of meromorphic functions of zero order is investigated. The existence of meromorphic solutions of some types of systems of complex partial q-difference equations in n is also investigated. Improvements and extensions of some results in the literature are presented. Some examples show that our results are, in a certain sense, the best possible.

MSC 2010: 30D35

Award Identifier / Grant number: 11171013

Award Identifier / Grant number: 11461054

Award Identifier / Grant number: A2015207007

Funding statement: The project was supported by the National Natural Science Foundation of China (11171013, 11461054) and supported by Natural Science Foundation of Hebei Province (A2015207007) and supported by Key Project of Science and Research of Hebei University of Economics and Business (2017KYZ04).

References

[1] D. C. Barnett, R. G. Halburd, W. Morgan and R. J. Korhonen, Nevanlinna theory for the q-difference operator and meromorphic solutions of q-difference equations, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), no. 3, 457–474. 10.1017/S0308210506000102Suche in Google Scholar

[2] Z. X. Chen, Z. B. Huang and R. R. Zhang, On difference equations relating to gamma function, Acta Math. Sci. Ser. B Engl. Ed. 31 (2011), no. 4, 1281–1294. 10.1016/S0252-9602(11)60315-9Suche in Google Scholar

[3] Y.-M. Chiang and S.-J. Feng, On the Nevanlinna characteristic of f(z+η) and difference equations in the complex plane, Ramanujan J. 16 (2008), no. 1, 105–129. 10.1007/s11139-007-9101-1Suche in Google Scholar

[4] L. Y. Gao, The growth order of solutions of systems of complex difference equations, Acta Math. Sci. Ser. B Engl. Ed. 33 (2013), no. 3, 814–820. 10.1016/S0252-9602(13)60040-5Suche in Google Scholar

[5] L. Y. Gao, On admissible solutions of two types of systems of differential equations in the complex plane, Acta Math. Sinica (Chin. Ser.) 43 (2000), no. 1, 149–156. Suche in Google Scholar

[6] L. Y. Gao, Systems of complex difference equations of Malmquist type, Acta Math. Sinica (Chin. Ser.) 55 (2012), no. 2, 293–300. Suche in Google Scholar

[7] L. Y. Gao, Solutions of complex higher-order difference equations, Acta Math. Sinica (Chin. Ser.) 56 (2013), no. 4, 451–458. Suche in Google Scholar

[8] L. Y. Gao, Meromorphic solutions to a type of complex difference equations, Chinese Ann. Math. Ser. A 35 (2014), no. 2, 193–202. Suche in Google Scholar

[9] R. G. Halburd and R. J. Korhonen, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl. 314 (2006), no. 2, 477–487. 10.1016/j.jmaa.2005.04.010Suche in Google Scholar

[10] R. Korhonen, A difference Picard theorem for meromorphic functions of several variables, Comput. Methods Funct. Theory 12 (2012), no. 1, 343–361. 10.1007/BF03321831Suche in Google Scholar

[11] I. Laine and C.-C. Yang, Clunie theorems for difference and q-difference polynomials, J. Lond. Math. Soc. (2) 76 (2007), no. 3, 556–566. 10.1112/jlms/jdm073Suche in Google Scholar

[12] I. Laine and C.-C. Yang, Value distribution of difference polynomials, Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), no. 8, 148–151. 10.3792/pjaa.83.148Suche in Google Scholar

[13] Z. H. Tu, Some Malmquist-type theorems of partial differential equations on 𝐂n, J. Math. Anal. Appl. 179 (1993), no. 1, 41–60. 10.1006/jmaa.1993.1334Suche in Google Scholar

[14] H. X. Yi and C. C. Yang, Theory of the Uniqueness of Meromorphic Functions, Science Press, Beijing, 1995. Suche in Google Scholar

[15] Z.-T. Wen, The q-difference theorems for meromorphic functions of several variables, Abstr. Appl. Anal. 2014 (2014), Article ID 736021. 10.1155/2014/736021Suche in Google Scholar

[16] J. L. Zhang and R. Korhonen, On the Nevanlinna characteristic of f(qz) and its applications, J. Math. Anal. Appl. 369 (2010), no. 2, 537–544. 10.1016/j.jmaa.2010.03.038Suche in Google Scholar

Received: 2015-03-30
Revised: 2016-11-27
Accepted: 2016-12-08
Published Online: 2017-08-12
Published in Print: 2019-09-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2017-0033/html
Button zum nach oben scrollen