Startseite Some applications of degenerate poly-Bernoulli numbers and polynomials
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Some applications of degenerate poly-Bernoulli numbers and polynomials

  • Dae San Kim und Taekyun Kim EMAIL logo
Veröffentlicht/Copyright: 2. August 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we consider degenerate poly-Bernoulli numbers and polynomials associated with a polylogarithmic function and a p-adic invariant integral on p. By using umbral calculus, we derive some identities of those numbers and polynomials.

MSC 2010: 05A40; 11B83; 11S80

Acknowledgements

The authors would like to thank the referees for their valuable comments.

References

[1] S. Araci, M. Acikgoz and A. Kilicman, Extended p-adic q-invariant integrals on p associated with applications of umbral calculus, Adv. Difference Equ. 2013 (2013), Aricle ID 96. 10.1186/1687-1847-2013-96Suche in Google Scholar

[2] S. Araci, M. Acikgoz and E. Şen, On the extended Kim’s p-adic q-deformed fermionic integrals in the p-adic integer ring, J. Number Theory 133 (2013), no. 10, 3348–3361. 10.1016/j.jnt.2013.04.007Suche in Google Scholar

[3] A. Bayad and T. Kim, Identities involving values of Bernstein, q-Bernoulli, and q-Euler polynomials, Russ. J. Math. Phys. 18 (2011), no. 2, 133–143. 10.1134/S1061920811020014Suche in Google Scholar

[4] L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Util. Math. 15 (1979), 51–88. Suche in Google Scholar

[5] S. Gaboury, R. Tremblay and B.-J. Fugère, Some explicit formulas for certain new classes of Bernoulli, Euler and Genocchi polynomials, Proc. Jangjeon Math. Soc. 17 (2014), no. 1, 115–123. Suche in Google Scholar

[6] Y. He and W. Zhang, A convolution formula for Bernoulli polynomials, Ars Combin. 108 (2013), 97–104. Suche in Google Scholar

[7] F. T. Howard, Explicit formulas for degenerate Bernoulli numbers, Discrete Math. 162 (1996), no. 1–3, 175–185. 10.1016/0012-365X(95)00284-4Suche in Google Scholar

[8] D. Kim and T. Kim, A note on poly-Bernoulli and higher-order poly-Bernoulli polynomials, Russ. J. Math. Phys. 22 (2015), no. 1, 26–33. 10.1134/S1061920815010057Suche in Google Scholar

[9] D. S. Kim and T. Kim, Higher-order Frobenius–Euler and poly-Bernoulli mixed-type polynomials, Adv. Difference Equ. 2013 (2013), Article ID 251. 10.1186/1687-1847-2013-251Suche in Google Scholar

[10] D. S. Kim and T. Kim, Daehee polynomials with q-parameter, Adv. Stud. Theor. Phys. 8 (2014), no. 13, 561–569. 10.12988/astp.2014.4570Suche in Google Scholar

[11] T. Kim, On explicit formulas of p-adic q-L-functions, Kyushu J. Math. 48 (1994), no. 1, 73–86. 10.2206/kyushujm.48.73Suche in Google Scholar

[12] T. Kim, q-Volkenborn integration, Russ. J. Math. Phys. 9 (2002), no. 3, 288–299. Suche in Google Scholar

[13] T. Kim, Symmetry p-adic invariant integral on p for Bernoulli and Euler polynomials, J. Difference Equ. Appl. 14 (2008), no. 12, 1267–1277. 10.1080/10236190801943220Suche in Google Scholar

[14] H. Ozden, p-adic distribution of the unification of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Comput. 218 (2011), no. 3, 970–973. 10.1016/j.amc.2011.01.075Suche in Google Scholar

[15] S. Roman, The Umbral Calculus, Pure Appl. Math. 111, Academic Press, New York, 1984. Suche in Google Scholar

[16] O. Schnetz, Graphical functions and single-valued multiple polylogarithms, Commun. Number Theory Phys. 8 (2014), no. 4, 589–675. 10.4310/CNTP.2014.v8.n4.a1Suche in Google Scholar

[17] C. F. Woodcock, An invariant p-adic integral on Zp, J. Lond. Math. Soc. (2) 8 (1974), 731–734. 10.1112/jlms/s2-8.4.731Suche in Google Scholar

Received: 2015-06-11
Accepted: 2015-09-17
Published Online: 2017-08-02
Published in Print: 2019-09-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2017-0039/html
Button zum nach oben scrollen