Startseite On multivalued stochastic integral equations driven by semimartingales
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On multivalued stochastic integral equations driven by semimartingales

  • Marek T. Malinowski ORCID logo EMAIL logo
Veröffentlicht/Copyright: 18. Oktober 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We consider multivalued stochastic integral equations driven by semimartingales. Such equations are formulated in two different forms, i.e., using multivalued stochastic up-trajectory and trajectory integrals, which are not equivalent. By the successive approximations method, we show the existence of a unique solution to each equation under a condition much weaker than the Lipschitz one. We indicate that the solutions are stable under small changes of the equation data. The results have immediate implications for solutions to single-valued stochastic integral equations driven by semimartingales.

Acknowledgements

The author would like to thank the anonymous referees for their remarks that led to the improvement of the paper.

References

[1] R. P. Agarwal and D. O’Regan, Existence for set differential equations via multivalued operator equations, Differential Equations and Applications. Vol. 5, Nova Science Publishers, New York (2007), 1–5. Suche in Google Scholar

[2] B. Ahmad, Stability of impulsive hybrid set-valued differential equations with delay by perturbing Lyapunov functions, J. Appl. Anal. 14 (2008), no. 2, 209–218. 10.1515/JAA.2008.209Suche in Google Scholar

[3] B. Ahmad and S. Sivasundaram, Setvalued perturbed hybrid integro-differential equations and stability in terms of two measures, Dynam. Systems Appl. 16 (2007), no. 2, 299–310. Suche in Google Scholar

[4] A. Arara and M. Benchohra, Fuzzy solutions for neutral functional differential equations with nonlocal conditions, Georgian Math. J. 11 (2004), no. 1, 35–42. 10.1515/GMJ.2004.35Suche in Google Scholar

[5] J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Systems Control Found. Appl. 2, Birkhäuser, Boston, 1990. Suche in Google Scholar

[6] T. G. Bhaskar, V. Lakshmikantham and J. V. Devi, Nonlinear variation of parameters formula for set differential equations in a metric space, Nonlinear Anal. 63 (2005), no. 5–7, 735–744. 10.1016/j.na.2005.02.036Suche in Google Scholar

[7] T. G. Bhaskar, V. Lakshmikantham and V. Devi, Revisiting fuzzy differential equations, Nonlinear Anal. 58 (2004), no. 3–4, 351–358. 10.1016/j.na.2004.05.007Suche in Google Scholar

[8] A. Bouchen, A. El Arni and Y. Ouknine, Intégration stochastique multivoque et inclusions différentielles stochastiques, Stochastics Rep. 68 (2000), no. 3–4, 297–327. 10.1080/17442500008834227Suche in Google Scholar

[9] E. Cépa, équations différentielles stochastiques multivoques, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 10, 1075–1078. 10.1007/BFb0094202Suche in Google Scholar

[10] K. L. Chung and R. J. Williams, Introduction to Stochastic Integration, Progr. Probab. Statist. 4, Birkhäuser, Boston, 1983. 10.1007/978-1-4757-9174-7Suche in Google Scholar

[11] F. S. De Blasi and F. Iervolino, Equazioni differenziali con soluzioni a valore compatto convesso, Boll. Unione Mat. Ital. (4) 2 (1969), 491–501; errata corrige, ibid. 3 (1969), 699. Suche in Google Scholar

[12] G. N. Galanis, T. G. Bhaskar, V. Lakshmikantham and P. K. Palamides, Set valued functions in Fréchet spaces: Continuity, Hukuhara differentiability and applications to set differential equations, Nonlinear Anal. 61 (2005), no. 4, 559–575. 10.1016/j.na.2005.01.004Suche in Google Scholar

[13] S. Hong, J. Gao and Y. Peng, Solvability and stability of impulsive set dynamic equations on time scales, Abstr. Appl. Anal. 2014 (2014), Article ID 610365. 10.1155/2014/610365Suche in Google Scholar

[14] S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Vol. I: Theory, Math. Appl. 419, Kluwer Academic Publishers, Dordrecht, 1997. 10.1007/978-1-4615-6359-4Suche in Google Scholar

[15] S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Vol. II: Applications, Math. Appl. 500, Kluwer Academic Publishers, Dordrecht, 2000. 10.1007/978-1-4615-4665-8Suche in Google Scholar

[16] J. Jiang, C. F. Li and H. T. Chen, Existence of solutions for set differential equations involving causal operator with memory in Banach space, J. Appl. Math. Comput. 41 (2013), no. 1–2, 183–196. 10.1007/s12190-012-0604-6Suche in Google Scholar

[17] O. Kaleva, A note on fuzzy differential equations, Nonlinear Anal. 64 (2006), no. 5, 895–900. 10.1016/j.na.2005.01.003Suche in Google Scholar

[18] A. Khastan and J. J. Nieto, A boundary value problem for second order fuzzy differential equations, Nonlinear Anal. 72 (2010), no. 9–10, 3583–3593. 10.1016/j.na.2009.12.038Suche in Google Scholar

[19] P. Krée, Diffusion equation for multivalued stochastic differential equations, J. Funct. Anal. 49 (1982), no. 1, 73–90. 10.1016/0022-1236(82)90086-6Suche in Google Scholar

[20] K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 397–403. Suche in Google Scholar

[21] V. Lakshmikantham, T. G. Bhaskar and J. Vasundhara Devi, Theory of Set Differential Equations in Metric Spaces, Cambridge Scientific Publishers, Cambridge, 2006. Suche in Google Scholar

[22] V. Lakshmikantham and R. N. Mohapatra, Theory of Fuzzy Differential Equations and Inclusions, Ser. Math. Anal. Appl. 6, Taylor & Francis, London, 2003. 10.1201/9780203011386Suche in Google Scholar

[23] D. Lépingle and C. Marois, équations différentielles stochastiques multivoques unidimensionnelles, Séminaire de Probabilités, XXI, Lecture Notes in Math. 1247, Springer, Berlin (1987), 520–533. 10.1007/BFb0077653Suche in Google Scholar

[24] J. Li, A. Zhao and J. Yan, The Cauchy problem of fuzzy differential equations under generalized differentiability, Fuzzy Sets and Systems 200 (2012), 1–24. 10.1016/j.fss.2011.10.009Suche in Google Scholar

[25] L. Li and S. Hong, Exponential stability for set dynamic equations on time scales, J. Comput. Appl. Math. 235 (2011), no. 17, 4916–4924. 10.1016/j.cam.2011.04.014Suche in Google Scholar

[26] A. J. B. a. Lopes Pinto, F. S. De Blasi and F. Iervolino, Uniqueness and existence theorems for differential equations with compact convex valued solutions, Boll. Unione Mat. Ital. (4) 3 (1970), 47–54. Suche in Google Scholar

[27] V. Lupulescu, On a class of fuzzy functional differential equations, Fuzzy Sets and Systems 160 (2009), no. 11, 1547–1562. 10.1016/j.fss.2008.07.005Suche in Google Scholar

[28] M. T. Malinowski, Interval Cauchy problem with a second type Hukuhara derivative, Inform. Sci. 213 (2012), 94–105. 10.1016/j.ins.2012.05.022Suche in Google Scholar

[29] M. T. Malinowski, On set differential equations in Banach spaces—A second type Hukuhara differentiability approach, Appl. Math. Comput. 219 (2012), no. 1, 289–305. 10.1016/j.amc.2012.06.019Suche in Google Scholar

[30] M. T. Malinowski, Second type Hukuhara differentiable solutions to the delay set-valued differential equations, Appl. Math. Comput. 218 (2012), no. 18, 9427–9437. 10.1016/j.amc.2012.03.027Suche in Google Scholar

[31] M. T. Malinowski, Approximation schemes for fuzzy stochastic integral equations, Appl. Math. Comput. 219 (2013), no. 24, 11278–11290. 10.1016/j.amc.2013.05.040Suche in Google Scholar

[32] M. T. Malinowski, On a new set-valued stochastic integral with respect to semimartingales and its applications, J. Math. Anal. Appl. 408 (2013), no. 2, 669–680. 10.1016/j.jmaa.2013.06.054Suche in Google Scholar

[33] M. T. Malinowski, Set-valued and fuzzy stochastic integral equations driven by semimartingales under Osgood condition, Open Math. 13 (2015), 106–134. 10.1515/math-2015-0011Suche in Google Scholar

[34] J. J. Nieto and R. Rodríguez-López, Some results on boundary value problems for fuzzy differential equations with functional dependence, Fuzzy Sets and Systems 230 (2013), 92–118. 10.1016/j.fss.2013.05.010Suche in Google Scholar

[35] J. J. Nieto, R. Rodríguez-López and D. N. Georgiou, Fuzzy differential systems under generalized metric spaces approach, Dynam. Systems Appl. 17 (2008), no. 1, 1–24. Suche in Google Scholar

[36] R. Pettersson, Existence theorem and Wong–Zakai approximations for multivalued stochastic differential equations, Probab. Math. Statist. 17 (1997), 29–45. Suche in Google Scholar

[37] P. Protter, Stochastic Integration and Differential Equations. A New approach, Appl. Math. (N. Y.) 21, Springer, Berlin, 1990. 10.1007/978-3-662-02619-9Suche in Google Scholar

[38] T. Taniguchi, Successive approximations to solutions of stochastic differential equations, J. Differential Equations 96 (1992), no. 1, 152–169. 10.1016/0022-0396(92)90148-GSuche in Google Scholar

[39] P. Wang and W. Sun, Practical stability in terms of two measures for set differential equations on time scales, Sci. World J. 2014 (2014), Article ID 241034. 10.1155/2014/241034Suche in Google Scholar PubMed PubMed Central

[40] S. Xu, Multivalued stochastic differential equations with non-Lipschitz coefficients, Chin. Ann. Math. Ser. B 30 (2009), no. 3, 321–332. 10.1007/s11401-007-0360-3Suche in Google Scholar

Received: 2015-01-30
Revised: 2015-10-19
Accepted: 2016-04-11
Published Online: 2017-10-18
Published in Print: 2019-09-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2017-0042/html
Button zum nach oben scrollen